Jensen 不等式
若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立:
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i}) \qquad (f(\sum ^{n}_{i=1}\lambda _{i}x_{i})\geq \sum ^{n}_{i=1}\lambda _{i}f(x_{i}))\]
特别地,取λi=1/n (i=1,2,...,n),就有
\[f(\frac{1}{n}\sum ^{n}_{i=1}x_{i})\leq \frac{1}{n}\sum ^{n}_{i=1} \qquad (f(\frac{1}{n}\sum ^{n}_{n=1})\geq \frac{1}{n}\sum ^{n}_{i=1}f(x_{i}))\]
为了方便说明,以下函数均以下凸函数为例
证明:
在i=1,2时 Jensen不等式 显然成立:
\[f(\lambda _{1}x_{1}+\lambda _{2}x_{2})\leq \lambda _{1}f(x_{1})+\lambda _{2}f(x_{2})\]
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]
利用数学归纳法证明 i≥3 的情况
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f(\lambda _{n+1}x_{n+1}+\sum ^{n}_{i=1}\lambda _{i}x_{i})\]
由题意\[\sum ^{n+1}_{i=1}\lambda _{i}=1\],
设\[\eta _{i}=\frac{\lambda {i}}{1-\lambda _{n+1}}\]
得:
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f[\lambda _{n+1}x_{n+1}+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}x_{i}]\]
由i=2时 Jensen不等式 成立,可得
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})f(\sum ^{n}_{i=1}\eta _{i}x_{i})\]
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}f(x_{i})=\sum ^{n+1}_{i=1}\lambda _{i}f(x_{i})\]
于是证得Jensen不等式在i≥3时也成立
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]
Jensen 不等式的更多相关文章
- 机器学习数学|微积分梯度jensen不等式
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...
- 数学分析中jensen不等式由浅入深进行教学(转)
中国知网:数学分析中Jensen不等式由浅入深进行教学
- 归并排序、jensen不等式、非线性、深度学习
前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深 ...
- 【数学基础篇】---详解极限与微分学与Jensen 不等式
一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...
- 从Jensen不等式到Minkowski不等式
整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...
- 凸函数与Jensen不等式
这个是在凸优化里面看的,在EM算法中看有用到,所以用latex写了篇回忆用的小短文,现在不会把latex产生的pdf怎么转变成放到这里的内容. 所以我选择直接贴图. 这个pdf可以在我的资源里找到. ...
- Jensen不等式
- MM bound 与 Jensen's inequality
MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...
- Machine Learning Algorithms Study Notes(6)—遗忘的数学知识
机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家 ...
随机推荐
- Hadoop-HA(高可用)集群搭建
Hadoop-HA集群搭建 一.基础准备工作 1.准备好5台Linux系统虚拟服务器或物理服务器 我这里演示采用虚拟服务器搭建Hadoop-HA集群,各自功能分配如下: NameNode节点:vt-s ...
- linux基础-wget、apt-get、yum的区别
Linux操作系统下安装与下载软件是Linux非常基本也非常重要的命令,分清wget.apt-get.yum的区别很重要. Linux操作系统主要分为两大类: RedHat系列:Redhat.Cent ...
- C#学习笔记9
1.多播委托:由与delegate关键字声明的委托,在编译后默认继承Delegate与MulticastDelegate类型,所以声明的委托自然就含有多播委托的特性,即一个委托变量可以调用一个方法链( ...
- hdu 1255 矩形覆盖面积(面积交)
http://www.cnblogs.com/scau20110726/archive/2013/04/14/3020998.html 面积交和面积并基本上差不多.在面积并里,len[]记录的是覆盖一 ...
- Python 显示调用栈
Python调试不如强类型的语言方便,显示调用栈有时非常必要,inspect模块很好用 import inspect inspect.stack() inspect.stack()返回的是一个函数栈帧 ...
- 理解JavaScript作用域
这是一篇译文,这里贴上译文地址:http://www.zcfy.cc/article/understanding-scope-in-javascript-8213-scotch-4075.html 这 ...
- bat 日期格式设置
转自:http://hi.baidu.com/awillaway/item/c61f964dc238190ce935044d 日期可以用扩展表示方法,你在cmd运行以下几个命令就明白了: echo ...
- Siebel 集成中的“发布-订阅”与“阅读”
将 Siebel 应用程序中存储的数据提供给企业中的其他应用程序时,通常需要遵循以下两种基本模式之一: 发布-订阅 阅读 “发布-订阅”是一种机制,根据该机制,一个系统(发布者)将更改或更新的数据提供 ...
- 模拟ArrayList
package com.helloidea; import java.util.ArrayList; import java.util.Collection; import java.util.Lis ...
- March 11 2017 Week 10 Saturday
Wisdom outweighs any wealth. 智慧比财富更有价值. Wisdom can create wealth if used in proper ways, it can help ...