Jensen 不等式
若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立:
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i}) \qquad (f(\sum ^{n}_{i=1}\lambda _{i}x_{i})\geq \sum ^{n}_{i=1}\lambda _{i}f(x_{i}))\]
特别地,取λi=1/n (i=1,2,...,n),就有
\[f(\frac{1}{n}\sum ^{n}_{i=1}x_{i})\leq \frac{1}{n}\sum ^{n}_{i=1} \qquad (f(\frac{1}{n}\sum ^{n}_{n=1})\geq \frac{1}{n}\sum ^{n}_{i=1}f(x_{i}))\]
为了方便说明,以下函数均以下凸函数为例
证明:
在i=1,2时 Jensen不等式 显然成立:
\[f(\lambda _{1}x_{1}+\lambda _{2}x_{2})\leq \lambda _{1}f(x_{1})+\lambda _{2}f(x_{2})\]
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]
利用数学归纳法证明 i≥3 的情况
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f(\lambda _{n+1}x_{n+1}+\sum ^{n}_{i=1}\lambda _{i}x_{i})\]
由题意\[\sum ^{n+1}_{i=1}\lambda _{i}=1\],
设\[\eta _{i}=\frac{\lambda {i}}{1-\lambda _{n+1}}\]
得:
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})=f[\lambda _{n+1}x_{n+1}+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}x_{i}]\]
由i=2时 Jensen不等式 成立,可得
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})f(\sum ^{n}_{i=1}\eta _{i}x_{i})\]
\[f(\sum ^{n+1}_{i=1}\lambda _{i}x_{i})\leq \lambda _{n+1}f(x_{n+1})+(1-\lambda _{n+1})\sum ^{n}_{i=1}\eta _{i}f(x_{i})=\sum ^{n+1}_{i=1}\lambda _{i}f(x_{i})\]
于是证得Jensen不等式在i≥3时也成立
\[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i})\]
Jensen 不等式的更多相关文章
- 机器学习数学|微积分梯度jensen不等式
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...
- 数学分析中jensen不等式由浅入深进行教学(转)
中国知网:数学分析中Jensen不等式由浅入深进行教学
- 归并排序、jensen不等式、非线性、深度学习
前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深 ...
- 【数学基础篇】---详解极限与微分学与Jensen 不等式
一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...
- 从Jensen不等式到Minkowski不等式
整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...
- 凸函数与Jensen不等式
这个是在凸优化里面看的,在EM算法中看有用到,所以用latex写了篇回忆用的小短文,现在不会把latex产生的pdf怎么转变成放到这里的内容. 所以我选择直接贴图. 这个pdf可以在我的资源里找到. ...
- Jensen不等式
- MM bound 与 Jensen's inequality
MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...
- Machine Learning Algorithms Study Notes(6)—遗忘的数学知识
机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家 ...
随机推荐
- !function()是干什么的?
叹号后面跟函数!function和加号后面跟函数+function都是跟(function(){})();这个函数是一个意思,都是告诉浏览器自动运行这个匿名函数的,因为!+()这些符号的运算符是最高的 ...
- Maven之依赖关系
在maven的管理体系中,各个项目组成了一个复杂的关系网,但是每个项目都是平等的,是个没有贵贱高低,众生平等的世界,全球每个项目从理论上来说都可以相互依赖.就是说,你跟开发Spring的大牛们平起平坐 ...
- input placeholder 在chrome 浏览器自动填充时,背景色覆盖原有背景图片问题。
user-block-name, .user-block-pwd { margin-bottom: 10%; text-align: center; position: relative; } .us ...
- 10th week task -3 Arrow function restore
Arrow function restore 为什么叫Arrow Function?因为它的定义用的就是一个箭头: x => x * x 上面的箭头函数相当于: function (x) { r ...
- 快速开始Python/WSGI应用程序
快速开始Python-wsig应用程序 官方参考文档 安装 uwsgi 安装 pip install uwsgi uwsgi --version # 查看 uwsgi 版本 测试 uwsgi 是否正常 ...
- dos.ORM配置和使用
处理oralce,sqlserver,access及其他常用数据库,下载和学习地址 1.web.config配置数据库连接字符串,以及数据库类型: <connectionStrings>& ...
- tr标签是什么
<tr> 标签定义 HTML 表格中的行. tr 元素包含一个或多个 th 或 td 元素.
- WebLogic配置与部署
一.创建域: 第一步,选择“开始菜单”-> “Oracle WebLogic”-> “WebLogic Server 10gR3” -> “Tools”-> “Configur ...
- 使用WindowsService为宿主实装WCF 服务
1. 写WCF服务 创建一个接口类,与一个实现类.接口类上打上[ServiceContract]标签,需要暴露的服务方法上打上[OperationContract] (注意:增加System.Se ...
- 笨办法学Python(四十)
习题 40: 字典, 可爱的字典 接下来我要教你另外一种让你伤脑筋的容器型数据结构,因为一旦你学会这种容器,你将拥有超酷的能力.这是最有用的容器:字典(dictionary). Python 将这种数 ...