gcd(a, b),就是求a和b的最大公约数

lcm(a, b),就是求a和b的最小公倍数

然后有个公式

a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •̀∀•́ ) 简写你懂吗)

解释(不想看就跳过){

  首先,求一个gcd,然后。。。

  a / gcd 和 b / gcd 这两个数互质了,也就是 gcd(   a / gcd ,b / gcd  )  =  1,然后。。。

  lcm = gcd *  (a / gcd) * (b / gcd)

  lcm = (a * b) / gcd

  所以。。a*b = gcd * lcm

}

所以要求lcm,先求gcd

辣么,问题来了,gcd怎么求

辗转相除法

while循环

LL gcd(LL a, LL b){
LL t;
while(b){
t = b;
b = a % b;
a = t;
}
return a;
}

还有一个递归写法

LL gcd(LL a, LL b){
if(b == 0) return a;
else return gcd(b, a%b);
} LL gcd(LL a, LL b){
return b ? gcd(b, a%b) : a;
}
//两种都可以

辣么,lcm = a * b / gcd

(注意,这样写法有可能会错,因为a * b可能因为太大  超出int  或者 超出 longlong)

所以推荐写成 : lcm = a / gcd * b

然后几个公式自己证明一下

gcd(ka, kb) = k * gcd(a, b)

lcm(ka, kb) = k * lcm(a, b)

上次做题碰到这个公式

lcm(S/a, S/b) = S/gcd(a, b)

S = 9,a = 4,b = 6,小数不会lcm,只好保留分数形式去通分约分。

当我看到右边那个公式。。。。

(╯°Д°)╯┻━┻

这TM我怎么想的到,给我证明倒是会证。 T_T

【附录】

这里给出使用欧几里得算法求最大公约数的递归和非递归的程序,同时给出穷举法求最大公约数的程序。

从计算时间上看,递推法计算速度最快。

程序中包含条件编译语句用于统计分析计算复杂度。

/*
* 计算两个数的最大公约数三种算法程序
*/ #include <stdio.h> //#define DEBUG
#ifdef DEBUG
int c1=, c2=, c3=;
#endif int gcd1(int, int);
int gcd2(int, int);
int gcd3(int, int); int main(void)
{
int m=, n=; printf("gcd1: %d %d result=%d\n", m, n, gcd1(m, n));
printf("gcd2: %d %d result=%d\n", m, n, gcd2(m, n));
printf("gcd3: %d %d result=%d\n", m, n, gcd3(m, n));
#ifdef DEBUG
printf("c1=%d c2=%d c3=%d\n", c1, c2, c3);
#endif return ;
} /* 递归法:欧几里得算法,计算最大公约数 */
int gcd1(int m, int n)
{
#ifdef DEBUG
c1++;
#endif
return (m==)?n:gcd1(n%m, m);
} /* 迭代法(递推法):欧几里得算法,计算最大公约数 */
int gcd2(int m, int n)
{
while(m>)
{
#ifdef DEBUG
c2++;
#endif
int c = n % m;
n = m;
m = c;
}
return n;
} /* 连续整数试探算法,计算最大公约数 */
int gcd3(int m, int n)
{
if(m>n) {
int temp = m;
m = n;
n = temp;
}
int t = m;
while(m%t || n%t)
{
#ifdef DEBUG
c3++;
#endif
t--;
}
return t;
}

关键代码(正解):

/* 迭代法(递推法):欧几里得算法,计算最大公约数 */
int gcd(int m, int n)
{
while(m>0)
{
int c = n % m;
n = m;
m = c;
}
return n;
}

数论3——gcd&&lcm的更多相关文章

  1. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  2. 【HDU 5382】 GCD?LCM! (数论、积性函数)

    GCD?LCM! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  3. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  4. Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】

    Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...

  5. 洛谷 UVA11388 GCD LCM

    UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...

  6. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  7. [POJ 2429] GCD & LCM Inverse

    GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10621   Accepted: ...

  8. POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)

    [题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...

  9. UVA - 11388 GCD LCM

    II U C   ONLINE   C ON TEST  Problem D: GCD LCM Input: standard input Output: standard output The GC ...

随机推荐

  1. 史上最简单的SpringCloud教程 | 第五篇: 路由网关(zuul)(Finchley版本)

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springcloud/2018/08/30/sc-f5-zuul/ 本文出自方志朋的博客 在微服务架构中,需要几 ...

  2. ios应用数据存储方式(归档) - 转

    一.简单说明  1.在使用plist进行数据存储和读取,只适用于系统自带的一些常用类型才能用,且必须先获取路径相对麻烦.  2.偏好设置(将所有的东西都保存在同一个文件夹下面,且主要用于存储应用的设置 ...

  3. flask中的request

    1.request是什么? 简单来说,它就是flask的封装的一个对象,这个对象包含着前端请求所带的所有信息.既然说它是一个对象,那么它肯定是有一些熟悉,和方法的,下面就来介绍下request里的熟悉 ...

  4. MySql Connector/C++8结果集处理Demo

    #include <iostream> #include <exception> #include <mysqlx/xdevapi.h> using std::co ...

  5. chromium之revocable_store

    // |RevocableStore| is a container of items that can be removed from the store. Revoke: 撤销 Revocable ...

  6. 小程序登录 -41003: aes 小程序加密数据解密失败问题

    在微信小程的开发中,登录问题,一定要按照这样的顺序 1. 小程序请求login,拿到code 然后传给服务端:  2.服务端拿到code 到微信服务器拿到sessionKey :3.然后小程序调用ge ...

  7. Spring Boot2.4双数据源的配置

    相较于单数据源,双数据源配置有时候在数据分库的时候可能更加有利 但是在参考诸多博客以及书籍(汪云飞的实战书)的时候,发现对于spring boot1.X是完全没问题的,一旦切换到spring boot ...

  8. Linux中查看已安装内存与交换空间使用情况

    目录   1. free查看内存使用量   2. 查看 /proc/meminfo 文件获取物理内存信息   3. top命令获取内存用量 1. free查看内存用量命令 该命令是专门用于查看内存用量 ...

  9. python中字典的遍历

    用ipython运行情况如下: #新建字典 In [1]: name_cards = {'name':'sunwukong','QQ':'123124','addr':'秦皇岛'} #生成key对象 ...

  10. Python系列5之模块

    模块 1. 模块的分类 模块,又称构件,是能够单独命名并独立地完成一定功能的程序语句的集合(即程序代码和数据结构的集合体). (1)自定义模块 自己定义的一些可以独立完成某个功能的一段程序语句,可以是 ...