修剪草坪 单调队列优化dp BZOJ2442
题目描述
在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪。现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠。
然而,Farm John的草坪非常脏乱,因此,Farm John只能够让他的奶牛来完成这项工作。Farm John有N(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。
靠近的奶牛们很熟悉,因此,如果Farm John安排超过K只连续的奶牛,那么,这些奶牛就会罢工去开派对:)。因此,现在Farm John需要你的帮助,计算FJ可以得到的最大效率,并且该方案中没有连续的超过K只奶牛。
输入输出格式
输入格式:
第一行:空格隔开的两个整数 N 和 K
第二到 N+1 行:第 i+1 行有一个整数 E_i
输出格式:
第一行:一个值,表示 Farm John 可以得到的最大的效率值。
输入输出样例
12
设 dp[x]表示不选 x 位置时最大值;
则 对于 i-k-1<=j<=i-1,必有一处不选;
注意到此时处理完前缀和后,可以优化dp;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n, k;
int e[maxn];
ll sum[maxn];
ll dp[maxn];
int l, r;
ll q[maxn];
int main()
{
//ios::sync_with_stdio(0);
n = rd(); k = rd();
for (int i = 1; i <= n; i++)e[i] = rd(), sum[i] = sum[i - 1] + 1ll * e[i];
l = 1, r = 1;
for (int i = 1; i <= n + 1; i++) {
while (l <= r && q[l] < i - k - 1)l++;
dp[i] = dp[q[l]] + sum[i - 1] - sum[q[l]];
while (l <= r && dp[q[r]] - sum[q[r]] <= dp[i] - sum[i])r--;
q[++r] = i;
}
cout << 1ll * dp[n + 1] << endl;
return 0;
}
修剪草坪 单调队列优化dp BZOJ2442的更多相关文章
- bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1159 Solved: 593[Submit] ...
- P2627 修剪草坪 (单调队列优化$dp$)
题目链接 Solution 70分很简单的DP,复杂度 O(NK). 方程如下: \[f[i][1]=max(f[j][0]+sum[i]-sum[j])\]\[f[i][0]=max(f[i-1][ ...
- bzoj2442[Usaco2011 Open]修剪草坪——单调队列优化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 考虑记录前 i 个.末尾 j 个连续选上的最大值.发现时空会爆. 又发现大量的转移形如 ...
- 动态规划专题(四)——单调队列优化DP
前言 单调队列优化\(DP\)应该还算是比较简单容易理解的吧,像它的升级版斜率优化\(DP\)就显得复杂了许多. 基本式子 单调队列优化\(DP\)的一般式子其实也非常简单: \[f_i=max_{j ...
- 「学习笔记」单调队列优化dp
目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
随机推荐
- HTTP直接请求webService
在实际开发中,会遇到各种各样的webService接口,并且对方提供的接口并不规范,一些客户端反而就不好使了,如cxf(客户端与动态调用)等,直接用java提供的api比较繁琐,这时直接用http r ...
- 各大IT/IC公司offer比较
1:本人西电通院2013届毕业硕士,根据今年找工作的情况以及身边同学的汇总,总结各大公司的待遇如下,吐血奉献给各位学弟学妹,公司比较全,你想去的公司不在这里面,基本上是无名小公司了:但无名小公司有时也 ...
- Linux下安装配置MySQL5.7服务器
Linux下安装配置MySQL服务器 一.安装环境 ============ OS:centos6.8 MySQL:mysql-5.7.16-linux-glibc2.5-x86_64.tar.gz ...
- 201671010140. 2016-2017-2 《Java程序设计》java学习第二周
学习第二周(Java基本程序设计结构) 这一周,着重学习了Java的简单程序设计实现及运行,通过自己操作,发现Java的程序语法大面 ...
- 当property遇上category
[当property遇上category] @property可以在类定义中,以及extension定义中使用,编译器会自动为@property生成代码,并在变量列表(ivar_list_t)中添加相 ...
- 高性能的城市定位API接口
如果不需要精准的定位,还有一种通过IP地址获取当前城市的方法,采用新浪的api接口. <script src="http://int.dpool.sina.com.cn/iplooku ...
- Nginx 模块开发
Nginx 模块概述 Nginx 模块有三种角色: 处理请求并产生输出的 Handler 模块 : 处理由 Handler 产生的输出的 Filter (滤波器)模块: 当出现多个后台 服务器时, ...
- 38.NOW() 函数
NOW 函数返回当前的日期和时间. 提示:如果您在使用 Sql Server 数据库,请使用 getdate() 函数来获得当前的日期时间. SQL NOW() 语法 SELECT NOW() FRO ...
- CF407B Long Path
好玩的题. 首先我们(看一下题解之后)发现当你第一次走到了一个点的时候,那么它之前的所有点一定都访问过了偶数次. 假设我们第一次走到了一个点$i$,那么$i - 1$一定访问了偶数次,那么第一次走$i ...
- 修改laravel中的pagination的样式
运行如下命令,拷贝出pagination样式到public/vendor目录下, 然后在pagination实例上调用links(‘传路径’)方法 使用起来非常方便,同时也可以自定义样式