题意

题目链接

Sol

zz floyd。

很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值

可以证明最优路径的长度一定\(\leqslant N\)

然后一波\(n^4\) dp就完了

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
int f[51][51][1001];
int main() {
//memset(f, 0x3f, sizeof(f));
N = read(); M = read();
for(int k = 1; k <= N; k++)
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
f[i][j][k] = INF;
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), w = read();
f[x][y][1] = min(f[x][y][1], w);
}
for(int l = 2; l <= N; l++)// num of edge
for(int k = 1; k <= N; k++) // mid point
for(int i= 1; i <= N; i++) // start point
for(int j = 1; j <= N; j++) // end point
f[i][j][l] = min(f[i][j][l], f[i][k][l - 1] + f[k][j][1]);
int Q = read();
while(Q--) {
int x = read(), y = read();
double ans = 1e18;
for(int i = 1; i <= N; i++) if(f[x][y][i] != INF) ans = min(ans, (double) f[x][y][i] / i);
if(ans == 1e18) puts("OMG!");
else printf("%.3lf\n", ans);
}
return 0;
}
/*
*/

洛谷P1730 最小密度路径(floyd)的更多相关文章

  1. [洛谷P1730] 最小密度路径

    类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \le ...

  2. 洛谷P1730最小密度路径

    题目传送门; 首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ...

  3. Luogu P1730 最小密度路径(最短路径+dp)

    P1730 最小密度路径 题面 题目描述 给出一张有 \(N\) 个点 \(M\) 条边的加权有向无环图,接下来有 \(Q\) 个询问,每个询问包括 \(2\) 个节点 \(X\) 和 \(Y\) , ...

  4. 【洛谷P1730】最小密度路径

    题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少.最小密度路径的定义是路径长度除以路径边数. 题解:利用矩阵乘法,可以预处理出从 X 到 Y ...

  5. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  6. [Luogu 1730]最小密度路径

    Description 给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). ...

  7. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  8. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  9. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

随机推荐

  1. Python3之random模块

    一.简介 ramdom模块提供了一个随机数的函数:random() 它可以返回一个随机生成的实数,范围在[0,1)范围内.需要注意的是random()是不能直接访问的,需要导入模块random才可以使 ...

  2. 两种unix网络编程线程池的设计方法

    unp27章节中的27.12中,我们的子线程是通过操作共享任务缓冲区,得到task的,也就是通过线程间共享的clifd[]数组,这个数组其实就是我们的任务数组,得到其中的connfd资源. 我们对这个 ...

  3. WIN7中 HttpListener 拒绝访问 异常解决 C#

      WIN7中 HttpListener 拒绝访问 异常解决 C# http://www.cnblogs.com/cmdszh/archive/2012/08/16/httplistener.html ...

  4. Pollard_Rho 整数分解法【学习笔记】

    引文:如果要对比较大的整数分解,显然之前所学的筛选法和是试除法都将不再适用.所以我们需要学习速度更快的Pollard_Rho算法. 算法原理: 生成两个整数a和b,计算p=gcd(a-b, n),知道 ...

  5. [转] Emmet-前端开发神器

    [From] https://segmentfault.com/a/1190000007812543 Emmet是一款编辑器插件,支持多种编辑器支持.在前端开发中,Emmet 使用缩写语法快速编写 H ...

  6. Angular 怎么在加载中加入 Loading 提示框

    [转自] http://zhidao.baidu.com/link?url=MX9eSRkQbBC8zrjsCi-t_PsftVRSIjiaUTHhdp6eDiZ0IqaZehSCo3n7fFXWyP ...

  7. 给json格式化的一个小工具

    var glob = require("glob") // options is optional var fs=require("fs") glob(&quo ...

  8. 小a的计算器

    链接:https://ac.nowcoder.com/acm/contest/317/A来源:牛客网 小a的数学基础实在太差了,以至于他只会用计算器算数.他的计算器比较特殊,只有+,−,×,/+,−, ...

  9. 腾讯云(Linux)安装.net core sdk2.1、net core runtime2.1

    按照微软指令安装: sdk2.1:https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-current 1. ...

  10. 转 LIST INCARNATION OF DATABASE

    incarnation在英文中是“化身”的意思. 那么在oracle中,它又是什么意思呢?有什么作用呢? 我们看一些基本概念 Current Incarnation(当前化身):数据库当前正在使用的化 ...