搜索5--noi1700:八皇后问题

一、心得

二、题目

1700:八皇后问题

总时间限制: 
10000ms

内存限制: 
65536kB
描述
在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方。
输入
无输入。
输出
按给定顺序和格式输出所有八皇后问题的解(见Sample Output)。
样例输入

样例输出
No. 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No. 2
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No. 3
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No. 4
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No. 5
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No. 6
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No. 7
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No. 8
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No. 9
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
...以下省略
提示
此题可使用函数递归调用的方法求解。
来源
计算概论05

三、分析

DFS经典题目

四、AC代码

 //1700:八皇后问题
/*
1、首先分析输出样例的顺序
选第一行,选第二行
按行的顺序
说明是指定了列,让我们来填行
*/
#include <iostream>
using namespace std;
//用来存储方案 ,下标都是从1开始
int a[][];
int visRow[]; //行
int visLeftIncline[];//左斜线 使用的时候 row+column
int visRightIncline[]; //右斜线,使用的时候row-column+8
int ansCount=; void init(){ } void print(){
cout<<"No. "<<(++ansCount)<<endl;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
cout<<a[i][j]<<" ";
}
cout<<endl;
} } void search(int column){
if(column>){
//if(ansCount>=5) return;
print();
//cout<< ansCount<<endl;
}
else{
for(int row=;row<=;row++){
if(!visRow[row]&&!visLeftIncline[row+column]&&!visRightIncline[row-column+]){
visRow[row]=;
visLeftIncline[row+column]=;
visRightIncline[row-column+]=;
a[row][column]=;
search(column+);//找下一列
//回溯
visRow[row]=;
visLeftIncline[row+column]=;
visRightIncline[row-column+]=;
a[row][column]=;
}
}
}
} int main(){
init();
search();
return ;
}

五、注意点

1、注意回溯里面的return

return语句总是返回到调用这个函数的父函数

而在回溯中

所以在最后面层的return是绝对不会影响到其他函数的计算结果和输出结果的

在以后每次输出结果的时候做一个判断,就能控制结果的输出了

搜索5--noi1700:八皇后问题的更多相关文章

  1. 【搜索】P1219 八皇后

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  2. LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天我们讲的是LeetCode的31题,这是一道非常经典的问题,经常会在面试当中遇到.在今天的文章当中除了关于题目的分析和解答之外,我们还会 ...

  3. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  4. 搜索6--noi1700:八皇后问题

    搜索6--noi1700:八皇后问题 一.心得 二.题目 1756:八皇后 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 会下国际象棋的人都很清楚:皇后可以 ...

  5. kb-01-a<简单搜索--dfs八皇后问题变种>

    题目描述: 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的 ...

  6. 深度搜索(dfs)+典型例题(八皇后)

    深度优先搜索简称深搜,从起点出发,走过的点要做标记,发现有没走过的点,就随意挑一个往前走,走不了就回退,此种路径搜索策略就称为“深度优先搜索”,简称“深搜”. 如上面的图所示:加入我们要找一个从V0到 ...

  7. OpenJudge1700:八皇后问题 //不属于基本法的基本玩意

    1700:八皇后问题//搜索 总时间限制:  10000ms 内存限制:  65536kB 描述 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方. 输入 无输入. 输出 按给定顺序和 ...

  8. 八皇后,回溯与递归(Python实现)

    八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩 ...

  9. C语言数据结构----递归的应用(八皇后问题的具体流程)

    本节主要讲八皇后问题的基本规则和递归回溯算法的实现以及具体的代码实现和代码分析. 转载请注明出处.http://write.blog.csdn.net/postedit/10813257 一.八皇后问 ...

随机推荐

  1. git commit -a -m "DM 1、获取aliOssSTS值,计算签名,实现视频PUT/POST2种上传方式上传;"

    git commit -a -m "DM 1.获取aliOssSTS值,计算签名,实现视频PUT/POST2种上传方式上传:" 微信小程序的视频上传

  2. bash常见命令

    pwd (Print Working Directory) 查看当前目录 cd (Change Directory) 切换目录,如 cd /etc ls (List) 查看当前目录下内容,如 ls - ...

  3. MySQL中行锁的算法

    行锁的3中算法 Record Lock:单个行记录上的锁 Gap Lock:间隙锁,锁定一个范围,但不包含记录本身 Next-key Lock:Gap Lock+Record Lock锁定一个范围,并 ...

  4. hive 安装警告 WARN conf.HiveConf: HiveConf of name hive.metastore.local does not exist

    解决方法: 在0.10  0.11或者之后的HIVE版本 hive.metastore.local 属性不再使用. 在配置文件里面:  <property>  <name>hi ...

  5. Wicket:一种构建和测试动态 Web 页面的简化框架

    https://www.ibm.com/developerworks/cn/web/wa-aj-wicket/

  6. eclipse修改web项目部署路径 wtpwebapps webapps 的设置

    eclipse修改web项目部署路径 wtpwebapps   webapps  的设置,在添加完server------>tomcat后,到server控制台进行设置 eclipse默认的部署 ...

  7. rails 下载 send_file

    def download send_file File.join(Rails.root, "public", @doc.link), :filename => @title+ ...

  8. Loadrunder之脚本篇——事务时间简介

    事务概念 事务是指用户在客户端做一种或多种业务所需要的操作集(actions),通过事务开始和结束函数可以标记完成该业务所需要的操作内容(脚本section).定义事务来衡量服务器的性能,例如,你可以 ...

  9. bex5部署后不更新

    哪个模块没更新,就编译哪个模块 在x5/tools/compile下,运行对应模块的bat,并清空浏览器缓存 如果修改了.w文件,也可以删除相应的.catch文件夹 和.release文件夹,并且注意 ...

  10. volatile笔记

    总结自:https://www.cnblogs.com/dolphin0520/p/3920373.html 了解volatile之前得明白什么是原子性.可见性.有序性及指令重排序,详见:https: ...