本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

Input

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

Output

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

Sample Input

【输入样例1】
4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17

【输入样例2】

3 1
1 2 1 1

Sample Output

【输出样例1】

32
【样例说明1】
如果小E走路径1→2→4,需要携带19+15=34个守护精灵;
如果小E走路径1→3→4,需要携带17+17=34个守护精灵;
如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;
如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。
综上所述,小E最少需要携带32个守护精灵。

【输出样例2】

-1
【样例说明2】
小E无法从1号节点到达3号节点,故输出-1。

HINT

2<=n<=50,000

0<=m<=100,000

1<=ai ,bi<=50,000

 
 
正解:SPFA+动态加边
解题报告:
  这道题考虑一下有没有优美的做法…
  两个约束条件,常用思路:枚举一个最优化另一个。
  那么我把边按a权值为第一关键字,b为第二关键字排序,依次加入图中。
  每次跑一遍SPFA并更新答案。
  思想很简单,居然能过官方数据…
  
  注意有两个优化:如果b权值相等的话可以一起加入,每次加边的时候连接的两个点直接加入SPFA扩展队列。
 
 
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
const int MAXN = 50011;
const int MAXM = 200011;
const int inf = (1<<30);
int n,m,ecnt,first[MAXN],next[MAXM],to[MAXM],w[MAXM],dis[MAXN],ans;
bool in[MAXN];
struct edge{ int x,y,a,b; }e[MAXM];
inline bool cmpa(edge q,edge qq){ if(q.a==qq.a) return q.b<qq.b; return q.a<qq.a; }
inline void link(int x,int y,int z){ next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z; }
queue<int>Q;
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void work(){
n=getint(); m=getint(); for(int i=1;i<=m;i++) { e[i].x=getint(); e[i].y=getint(); e[i].a=getint(); e[i].b=getint(); }
sort(e+1,e+m+1,cmpa); int x,y;
ans=inf; for(int i=1;i<=n;i++) dis[i]=inf;
dis[1]=0; for(int i=1;i<=m;i++) {
x=e[i].x; y=e[i].y;
link(x,y,e[i].b); link(y,x,e[i].b);
if(!in[x]) in[x]=1,Q.push(x);
if(!in[y]) in[y]=1,Q.push(y);
if(e[i].a==e[i-1].a && e[i].b==e[i-1].b) continue;
while(!Q.empty()) {
x=Q.front(); Q.pop(); in[x]=0;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(max(w[i],dis[x])>=dis[v]) continue;
dis[v]=max(w[i],dis[x]);
if(!in[v]) { in[v]=1; Q.push(v); }
}
}
ans=min(ans,dis[n]+e[i].a);
}
if(ans==inf) printf("-1");
else printf("%d",ans);
} int main()
{
work();
return 0;
}

  

BZOJ3669 [Noi2014]魔法森林(SPFA+动态加边)的更多相关文章

  1. bzoj3669: [Noi2014]魔法森林 lct版

    先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...

  2. 【BZOJ 3669】 3669: [Noi2014]魔法森林 (动态spfa)

    3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N ...

  3. [bzoj3669][Noi2014]魔法森林_LCT_并查集

    魔法森林 bzoj-3669 Noi-2014 题目大意:说不明白题意系列++……题目链接 注释:略. 想法:如果只有1个参量的话spfa.dij什么的都上来了. 两个参量的话我们考虑,想将所有的边按 ...

  4. BZOJ3669[Noi2014]魔法森林——kruskal+LCT

    题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住 ...

  5. BZOJ3669: [Noi2014]魔法森林(瓶颈生成树 LCT)

    Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 3558  Solved: 2283[Submit][Status][Discuss] Descript ...

  6. [bzoj3669][Noi2014]魔法森林——lct

    Brief description 给定一个无向图,求从1到n的一条路径使得这条路径上最大的a和b最小. Algorithm Design 以下内容选自某HN神犇的blog 双瓶颈的最小生成树的感觉, ...

  7. 沉迷Link-Cut tree无法自拔之:[BZOJ3669][Noi2014] 魔法森林

    来自蒟蒻 \(Hero \_of \_Someone\) 的 \(LCT\) 学习笔记 $ $ 有一个很好的做法是 \(spfa\) ,但是我们不聊 \(spfa\) , 来聊 \(LCT\) \(L ...

  8. bzoj3669: [Noi2014]魔法森林 lct

    记得去年模拟赛的时候好像YY出二分答案枚举a,b的暴力,过了55欸 然后看正解,为了将两维变成一维,将a排序,模拟Kruskal的加边过程,同时维护1到n的最大值,加入一条边e(u,v,a,b)时有以 ...

  9. BZOJ3669 NOI2014魔法森林

    按a从小到大排序,然后按b建图. 每次只需要找1~n中最大的b加当前的a计算答案即可. 这里还有一个小操作就是化边为点,把一条边的边权看做一个点的点权然后多连两条边. By:大奕哥 #include& ...

随机推荐

  1. 【BZOJ1266】[AHOI2006]上学路线route Floyd+最小割

    [BZOJ1266][AHOI2006]上学路线route Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林 ...

  2. oracle 创建表并添加注释

    CREATE TABLE t1(id varchar2(32) primary key,name VARCHAR2(32) ,age VARCHAR2(32) ) 添加表注释:COMMENT ON t ...

  3. Git使fork项目与源项目保持一致方法

    Github上经常干的一件事情是看到好的项目,总会fork到自己的项目列表里,但是源项目如果更新了,怎么同步到我们自己的fork项目呢? 操作如下: 先clone自己的fork项目到本地工程目录, g ...

  4. 创建String字符串的方式与区别

    Java中创建一个字符串的方式有很多种,常见如: String s = new String("riqi"); String s = "riqi"; 但两者有什 ...

  5. POJ 3259 Wormholes【bellman_ford判断负环——基础入门题】

    链接: http://poj.org/problem?id=3259 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  6. mustache模板技术(转)

    项目首页:http://mustache.github.com/  项目文档:http://mustache.github.com/mustache.5.html  Demo:  http://mus ...

  7. BaseServlet 介绍

    1. BaseServlet 的作用 让一个Servlet可以处理多种不同的请求,不同的请求调用Servlet的不同方法. 2. 实现原理 客户端发送请求时, 必须多给出一个参数, 用来说明要调用的方 ...

  8. Python-openpyxl操作

    from openpyxl import Workbook from openpyxl import load_workbook # 加载workbook,注意,openpyxl只支持xlsx格式 w ...

  9. 学习pyhton需要做哪些准备工作

    1:知道python个版本是有差异的 2:既然有差异,那么如何在不同项目不同版本的开发环境; ----------------------------------------------------- ...

  10. boost之定时器和io_service

    1.定时器的使用,sleep是等待线程,asio封装了操作系统的异步系统调用select,epoll. io_servie 实现了一个任务队列,这里的任务就是void(void)的函数.Io_serv ...