SGU 106 The equation 扩展欧几里德
106. The equation
time limit per test: 0.25 sec.
memory limit per test: 4096
KB
There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must
determine, how many integer roots of this equation are satisfy to the
following conditions : x1<=x<=x2, y1<=y<=y2. Integer root
of this equation is a pair of integer numbers (x,y).
Input
Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.
Output
Write answer to the output.
Sample Input
1 1 -3
0 4
0 4
Sample Output
4
思路:ax+by=-c;
扩展欧几里德求解;
x=x0+b/gcd(a,b)*t;
y=y0+a/gcd(a,b)*t;
求x1<=x<=x2&&y1<=y<=y2的条件下,t的可行解;
找到x的范围的t的可行解[lx,rx];
同理 [ly,ry];
ans=min(rx,ry)-max(lx,ly)+1;
#include<bits/stdc++.h>
using namespace std;
#define ll __int64
#define esp 1e-13
const int N=1e3+,M=1e6+,inf=1e9+,mod=;
void extend_Euclid(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
extend_Euclid(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll gcd(ll a,ll b)
{
if(b==)
return a;
return gcd(b,a%b);
}
int main()
{
ll a,b,c;
ll lx,rx;
ll ly,ry;
scanf("%I64d%I64d%I64d",&a,&b,&c);
scanf("%I64d%I64d",&lx,&rx);
scanf("%I64d%I64d",&ly,&ry);
c=-c;
if(lx>rx||ly>ry)
{
printf("0\n");
return ;
}
if (a == && b == && c == )
{
printf("%I64d\n",(rx-lx+) * (ry-ly+));
return ;
}
if (a == && b == )
{
printf("0\n");
return ;
}
if (a == )
{
if (c % b != )
{
printf("0\n");
return ;
}
ll y = c / b;
if (y >= ly && y <= ry)
{
printf("%I64d\n",rx - lx + );
return ;
}
else
{
printf("0\n");
return ;
}
}
if (b == )
{
if (c % a != )
{
printf("0\n");
return ;
}
ll x = c / a;
if (x >= lx && x <= rx)
{
printf("%I64d\n",ry - ly + );
return ;
}
else
{
printf("0\n");
return ;
}
}
ll hh=gcd(abs(a),abs(b));
if(c%hh!=)
{
printf("0\n");
return ;
}
else
{
ll x,y;
extend_Euclid(abs(a),abs(b),x,y);
x*=(c/hh);
y*=(c/hh);
if(a<)
x=-x;
if(b<)
y=-y;
a/=hh;
b/=hh;
ll tlx,trx,tly,trry;
if(b>)
{
ll l=lx-x;
tlx=l/b;
if(l>=&&l%b)
tlx++;
ll r=rx-x;
trx=r/b;
if(r<&&r%b)
trx--;
}
else
{
b=-b;
ll l=x-rx;
tlx=l/b;
if(l>=&&l%b)
tlx++;
ll r=x-lx;
trx=r/b;
if(r<&&r%b)
trx--;
}
if(a>)
{
ll l=-ry+y;
tly=l/a;
if(l>=&&l%a)
tly++;
ll r=-ly+y;
trry=r/a;
if(r<&&r%a)
trry--;
}
else
{
a=-a;
ll l=ly-y;
tly=l/a;
if(l>=&&l%a)
tly++;
ll r=ry-y;
trry=r/a;
if(r<&&r%a)
trry--;
}
printf("%I64d\n",(max(0LL,min(trry,trx)-max(tly,tlx)+)));
return ;
}
return ;
}
SGU 106 The equation 扩展欧几里德的更多相关文章
- SGU 106 The equation 扩展欧几里得好题
扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...
- SGU 106 The Equation 扩展欧几里得应用
Sol:线性不定方程+不等式求解 证明的去搜下别人的证明就好了...数学题. #include <algorithm> #include <cstdio> #include & ...
- 数论 + 扩展欧几里得 - SGU 106. The equation
The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...
- SGU 106 The equation
H - The equation Time Limit:250MS Memory Limit:4096KB 64bit IO Format:%I64d & %I64u Subm ...
- SGU 106 The equation【扩展欧几里得】
先放一张搞笑图.. 我一直wa2,这位不认识的大神一直wa9...这样搞笑的局面持续了一个晚上...最后各wa了10发才A... 题目链接: http://acm.hust.edu.cn/vjudge ...
- 扩展欧几里德 SGU 106
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106 题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
随机推荐
- IDEA错误的将所有代码文件都加入版本控制
1.问题: IDEA将从Git上拉取的所有代码文件都加入版本控制里,而这些文件和远程服务器没有任何区别: 2.原因: 后来发现,虽然项目使用的是Git的版本控制,但是异常模块都是使用SVN的版本控制: ...
- 【转】哈希(Hash)与加密(Encrypt)的基本原理、区别及工程应用
0.摘要 今天看到吉日嘎拉的一篇关于管理软件中信息加密和安全的文章,感觉非常有实际意义.文中作者从实践经验出发,讨论了信息管理软件中如何通过哈希和加密进行数据保护.但是从文章评论中也可以看出很多朋友对 ...
- Object-Oriented Metrics: LCOM 内聚性的度量
Object-Oriented Metrics: LCOM https://www.computing.dcu.ie/~renaat/ca421/LCOM.html Object-Oriented M ...
- ArcGIS for window mobile 数据打开
前言 环境信息:ArcGIS for windows mobile 10.1.1,ArcGIS runtime sdk for windows mobile 10.1.1 一.MapCache的打开 ...
- CRM客户关系管理系统-需求概设和详设
大概设计 大概设计就是对需求进行一个整体性分析,把需要实现的功能都列出来,对于客户关系管理系统,我们需要从角色出发,从而确定有哪些需求,最好是画个思维导图 首先我们是为培训学校这么一个场景来开发的,所 ...
- 016-Hadoop Hive sql语法详解6-job输入输出优化、数据剪裁、减少job数、动态分区
一.job输入输出优化 善用muti-insert.union all,不同表的union all相当于multiple inputs,同一个表的union all,相当map一次输出多条 示例 二. ...
- PyNest——part 2: populations of neurons
part 2: populations of neurons introduction 在这篇讲义中,我们着眼于创建和参数化神经元批次,并将它们连接起来. 当你完成这些材料时,你会知道如何: 创建具有 ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)(转)
转自http://www.cnblogs.com/lc1217/p/7324935.html 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的 ...
- ModelSim之TCL仿真
在使用ModelSim时,我们一般都是从界面UI进行操作的,这样也比较直观易学.但是在很多的调试时,发现很多操作都是重复的,修改一下代码就要再次进行相关操作,这样很没有效率.其实,ModelSim是可 ...
- 流量分析系统----讲解-echarts模拟迁移(结合china.js)
百度 Echarts 地图->模拟迁徙,实现自动切换地图 小航哥注释: 1.本文主要是把模拟迁移的流程讲了一遍,讲的很好.具体实现参考航哥这篇随笔“流量分析系统----实现-echarts模拟迁 ...