[题目链接] https://www.luogu.org/problemnew/show/P4449

给定n,m,k,计算

\(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\)

对1000000007取模的结果

/*
-----------------------
基本套路:
1.枚举约数
2.枚举整除分块,观察倍数关系
3.发现g(T)是[积性函数],且g=μ*f.此时有很好的转移方法
if(i为质数) g[i]=f[i]-1
else{
if(i为某个质数整数幂) g[p^k]=g[p^(k-1)]*f[p]+f[1]*μ[p^k]
else g[i]=g[i/low[i]]*g[low[i]*prime[j]] 即把最小的约数都放到一起,以满足互质
}
4.预处理的初始化,g[1]=1.
-----------------------2019.2.15
*/
#include<bits/stdc++.h>
using namespace std;
#define int long long
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int MAXN=5e6+5;
const int mod=1e9+7; LL mu[MAXN],g[MAXN],f[MAXN],sum[MAXN],prime[MAXN],low[MAXN];
bool vis[MAXN];
int T,n,m,k; inline int qpow(int a,int b){
LL res=1;
while(b){
if(b&1) (res*=a)%=mod;
(a*=a)%=mod;
b>>=1;
}
return res;
} inline void init(int n){
mu[1]=1;
g[1]=1;//
for(int i=1;i<=n;i++)
f[i]=qpow(i,k);
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++prime[0]]=i;
mu[i]=-1;
low[i]=i;
g[i]=(f[i]-1)%mod;//i为质数的转移
}
for(int j=1;j<=prime[0]&&i*prime[j]<=n;j++){
vis[i*prime[j]]=true;
if(i%prime[j]==0){
low[i*prime[j]]=low[i]*prime[j];
if(low[i]==i) //整次幂情况
g[i*prime[j]]=(g[i]*f[prime[j]])%mod;// +f[1]*mu[i*prime[j]]
else
g[i*prime[j]]=(g[i/low[i]]*g[low[i]*prime[j]])%mod;
break;
}
else{
g[i*prime[j]]=(g[i]*g[prime[j]])%mod;
low[i*prime[j]]=prime[j];//每个数只会由它最小的约数更新一次
mu[i*prime[j]]=-mu[i];
}
}
}
for(int i=1;i<=n;i++)
sum[i]=(sum[i-1]+g[i])%mod;
} signed main(){
//freopen("4449.in","r",stdin);
T=read(),k=read();
init(5e6);
while(T--){
n=read(),m=read();
if(n>m) swap(n,m);
LL ans=0;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
(ans+=(n/l)*(m/l)%mod*(sum[r]-sum[l-1]+mod)%mod)%=mod;
}
printf("%lld\n",ans);
}
}

P4449 于神之怒加强版 (莫比乌斯反演)的更多相关文章

  1. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  2. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  3. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  4. BZOJ4407 于神之怒加强版 - 莫比乌斯反演

    题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...

  5. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  6. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

  7. BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]

    题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...

  8. BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)

    Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...

  9. BZOJ.4407.于神之怒加强版(莫比乌斯反演)

    题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...

  10. luogu4449 于神之怒加强版(莫比乌斯反演)

    link 给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果 多组数据,T<=2000,1<=N,M,K&l ...

随机推荐

  1. c++ (proxy)代理模式

    假设我们有几个具有相似的窗体,都包含关闭窗体(closeButton)和按钮单击事件(ClickButton)我们在处理时,不想直接操作每个窗体,可以请求代理. #include<iostrea ...

  2. SpringBoot16 MockMvc的使用、JsonPath的使用、请求参数问题、JsonView、分页查询参数、JsonProperty

    1 MockMvc的使用 利用MockMvc可以快速实现MVC测试 坑01:利用MockMvc进行测试时应用上下文路径是不包含在请求路径中的 1.1 创建一个SpringBoot项目 项目脚手架 1. ...

  3. Server嵌套事务处理的方法

    源文档 http://wenku.baidu.com/link?url=yUH8Yhb8isIvJb8A7c0Hv_ktFSLt-JTvrQd2e2TGmFwzwGWqkjFfb1tXv5ZR1FmP ...

  4. sql server 错误总结

    1>无法访问sql server2000数据库 1.1>安装sql server2000 sp1的补丁包. 1.2>sql server 数据库开启了允许远程访问. 1.3>s ...

  5. xamarin.droid自己的示例工程有些都装不上模拟器,是因为它的architectures选项没设对

    也许是版本更迭导致的,有些老工程的architectures不对,如果x86不勾的话,是不能在genymotion的模拟器上跑的.

  6. Browser

    浏览器中关于事件的那点事儿 作者: 顽Shi  发布时间: 2014-02-01 20:22  阅读: 7830 次  推荐: 25   原文链接   [收藏]   摘要:事件在Web前端领域有很重要 ...

  7. Java 核心类库之反射机制

    1:什么是反射机制? 2:反射机制它可以做什么呢? 3:反射机制对应的API又是什么? 1):通过反射机制来获取一个对象的全限定名称(完整包名),和类名: 2):实例化Class对象 3):获取对象的 ...

  8. memset函数使用

    函数原型 void *memset(void *s,int c,size_t n): 功能 将已开辟内存空间 s 的首 n 个字节的值设为值 c. 头文件  #include<memory.h& ...

  9. C#中base的作用

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  10. angular 基本依赖注入

    import { Injectable } from '@angular/core'; @Injectable() export class ProductServiceService { const ...