.NET CLR 和 Java VM 都是堆叠式虚拟机器(Stack-Based VM),也就是說,它們的指令集(Instruction Set)都是採用堆叠运算的方式:执行时的资料都是先放在堆叠中,再进行运算。JavaVM 有約 200 個指令(Instruction),每個指令都是 1 byte 的 opcode(操作码),后面接不等数目的参数;.NET CLR 有超過 220個指令,但是有些指令使用相同的 opcode,所以 opcode 的数目比指令数略少。特別注意,.NET 的 opcode 長度並不固定,大部分的 opcode 長度是 1 byte,少部分是 2 byte。

下面是一個简单的 C# 原始码:

复制代码代码如下:
using System; 
public class Test { 
    public static void Main(String[] args) { 
        int i=1; 
        int j=2; 
        int k=3; 
        int answer = i+j+k; 
        Console.WriteLine("i+j+k="+answer); 
    } 

將此原始码编译之后,可以得到一個 EXE的程序。我們可以通过 ILDASM.EXE(图-0) 來反编译 EXE 以观察IL。我將 Main() 的 IL 反编译条列如下,這裡共有十八道IL 指令,有的指令(例如 ldstr 与 box)后面需要接参数,有的指令(例如 ldc.i4.1 與与add)后面不需要接参数。


图-0
ldc.i4.1
stloc.0
ldc.i4.2
stloc.1
ldc.i4.3
stloc.2
ldloc.0
ldloc.1
add
ldloc.2
add
stloc.3
ldstr      "i+j+k="
ldloc.3
box        [mscorlib]System.Int32
call       string [mscorlib]System.String::Concat(object, object)
call       void [mscorlib]System.Console::WriteLine(string)
ret

此程式执行時,关键的记忆体有三种,分別是:

1、Managed Heap:這是动态配置(Dynamic Allocation)的记忆体,由 Garbage Collector(GC)在执行時自動管理,整個Process 共用一個 Managed Heap。

2、Call Stack:這是由 .NET CLR 在执行時自動管理的记忆体,每個 Thread 都有自己专属的 Call Stack。每呼叫一次 method,就会使得Call Stack 上多了一個 Record Frame;呼叫完毕之后,此 Record Frame 会被丢弃。一般來說,Record Frame 內记录着 method 参数(Parameter)、返回位址(Return Address)、以及区域变数(Local Variable)。Java VM 和 .NET CLR 都是使用 0, 1, 2… 编号的方式來識別区别变数。

3、Evaluation Stack:這是由 .NET CLR 在执行時自動管理的记忆体,每個 Thread 都有自己专属的 Evaluation Stack。前面所謂的堆叠式虚拟机器,指的就是這個堆叠。

后面有一連串的示意图,用來解說在执行時此三种记忆体的变化。首先,在進入 Main() 之后,尚未执行任何指令之前,记忆体的狀況如图1 所示:

图1

接着要执行第一道指令 ldc.i4.1。此指令的意思是:在 Evaluation Stack 置入一個 4 byte 的常数,其值為 1。执行完此道指令之后,记忆体的变化如图2 所示:

ldc.i4.1:表示加载一个值为1到堆栈中,该条指令的语法结构是:
ldc.typevalue:ldc指令加载一个指定类型的常量到stack.
ldc.i4.number:ldc指令更加有效.它传输一个整型值-1以及0到8之间的整数给计算堆栈

图2

接着要执行第二道指令 stloc.0。此指令的意思是:从 Evaluation Stack 取出一個值,放到第 0 号变数(V0)中。這裡的第 0 号变数其实就是原始码中的i。执行完此道指令之后,记忆体的变化如图3 所示:

图3

后面的第三道指令和第五道指令雷同於第一道指令,且第四道指令和第六道指令雷同於第二道指令。為了节省篇幅,我不在此一一贅述。提醒大家第 1 号变数(V1)其实就是原始码中的 j,且第 2 号变数(V2)其实就是源码中的 k。图4~7 分別是执行完第三~六道指令之后,记忆体的变化图:

图4

图5


图6


图7

接着要执行第七道指令 ldloc.0 以及第八道指令 ldloc.1:分別將 V0(也就是 i)和 V1(也就是 j)的值放到 Evaluation Stack,這是相加前的准备動作。图8 與图9 分別是执行完第七、第八道指令之后,记忆体的变化图:

图8


图9

接着要执行第九道指令 add。此指令的意思是:从 Evaluation Stack 取出兩個值(也就是 i 和 j),相加之后將結果放回 Evaluation Stack 中。执行完此道指令之后,记忆体的变化如图10 所示:


图10

接着要执行第十道指令 ldloc.2。此指令的意思是:分別將 V2(也就是 k)的值放到 Evaluation Stack,這是相加前的准备動作。执行完此道指令之后,记忆体的变化如图11 所示:


图11

接着要执行第十一道指令 add。从 Evaluation Stack 取出兩個值,相加之后將結果放回 Evaluation Stack 中,此為 i+j+k 的值。执行完此道指令之后,记忆体的变化如图12 所示:


图12

接着要执行第十二道指令 stloc.3。从 Evaluation Stack 取出一個值,放到第 3 号变数(V3)中。這裡的第3号变数其实就是原始码中的 answer。执行完此道指令之后,记忆体的变化如图13 所示:


图13

接着要执行第十三道指令 ldstr "i+j+k="。此指令的意思是:將 "i+j+k=" 的 Reference 放進 Evaluation Stack。执行完此道指令之后,记忆体的变化如图14 所示:


图14

接着要执行第十四道指令 ldloc.3。將 V3 的值放進 Evaluation Stack。执行完此道指令之后,记忆体的变化如图15 所示:


图15

接着要执行第十五道指令 box [mscorlib]System.Int32,从此处可以看出,int到string实际是进行了装箱操作的,所以会有性能损失,可以在以后的编码中减少装箱操作来提高性能。此指令的意思是:从 Evaluation Stack 中取出一個值,將此 Value Type 包裝(box)成為 Reference Type。执行完此道指令之后,记忆体的变化如图16 所示:


图16

接着要执行第十六道指令 call string [mscorlib] System.String::Concat(object, object)。此指令的意思是:从 Evaluation Stack 中取出兩個值,此二值皆為 Reference Type,下面的值当作第一個参数,上面的值当作第二個参数,呼叫 mscorlib.dll 所提供的 System.String.Concat() method 來將此二参数進行字串接合(String Concatenation),將接合出來的新字串放在 Managed Heap,將其 Reference 放進 Evaluation Stack。值得注意的是:由於 System.String.Concat() 是 static method,所以此處使用的指令是 call,而非 callvirt(呼叫虚拟)。执行完此道指令之后,记忆体的变化如图17 所示:


图17

請注意:此時 Managed Heap 中的 Int32(6) 以及 String("i+j+k=") 已經不再被參考到,所以变成垃圾,等待 GC 的回收。

接着要执行第十七道指令 call void [mscorlib] System.Console::WriteLine(string)。此指令的意思是:从 Evaluation Stack 中取出一個值,此值為 Reference Type,將此值当作参数,呼叫 mscorlib.dll 所提供的 System.Console.WriteLine() method 來將此字串显示在 Console 視窗上。System.Console.WriteLine() 也是 static method。执行完此道指令之后,记忆体的变化如图18 所示:

图18

接着要执行第十八道指令 ret。此指令的意思是:結束此次呼叫(也就是 Main 的呼叫)。此時会檢查 Evaluation Stack 內剩下的資料,由於 Main() 宣告不需要传出值(void),所以 Evaluation Stack 內必須是空的,本范例符合這樣的情況,所以此時可以順利結束此次呼叫。而 Main 的呼叫一結束,程式也随之結束。执行完此道指令之后(且在程式結束前),记忆体的变化如图19 所示:

图19

通过此范例,读者应该可以对于 IL 有最基本的认识。对 IL 感兴趣的读者应该自行阅读 Serge Lidin 所著的《Inside Microsoft .NET IL Assembler》(Microsoft Press 出版)。我认为:熟知 IL 每道指令的作用,是 .NET 程式員必备的知识。.NET 程式員可以不会用 IL Assembly 写程式,但是至少要看得懂 ILDASM 反编译出來的 IL 組合码。

NET中IL理解(转)的更多相关文章

  1. 一步步教你读懂NET中IL(附带图)

    一步步教你读懂NET中IL(附带图) 接触NET也有1年左右的时间了,NET的内部实现对我产生了很大的吸引力,在msdn上找到一篇关于NET的IL代码的图解说明,写的挺不错的.个人觉得:能对这些底部的 ...

  2. session与cookie的区别以及HTML5中WebStorage理解

    一.session与cookie的区别 二.HTML5中WebStorage理解 WebStorage的目的是克服由cookie所带来的一些限制,当数据需要被严格控制在客户端时,不需要持续的将数据发回 ...

  3. 关于java中Stream理解

    关于java中Stream理解 Stream是什么 Stream:Java 8新增的接口,Stream可以认为是一个高级版本的Iterator.它代表着数据流,流中的数据元素的数量可以是有限的, 也可 ...

  4. go---weichart个人对Golang中并发理解

    个人觉得goroutine是Go并行设计的核心,goroutine是协程,但比线程占用更少.golang对并发的处理采用了协程的技术.golang的goroutine就是协程的实现. 十几个gorou ...

  5. ios--->OC中Protocol理解及在代理模式中的使用

    OC中Protocol理解及在代理模式中的使用 Protocol基本概念 Protocol翻译过来, 叫做"协议",其作用就是用来声明一些方法: Protocol(协议)的作用 定 ...

  6. java中如何理解:其他类型 + string 与 自增类型转换和赋值类型转换

    java中如何理解:其他类型 + string 与 自增类型转换和赋值类型转换 一.字符串与其他类型连接 public class DemoString{ public static void mai ...

  7. 基础学习:关于this在派生类构造函数中的理解

    https://www.cnblogs.com/Bear-Study-Hard/archive/2006/01/09/313551.html 看了上面这篇文章有感,特做了个小样板,以加深对于this在 ...

  8. (二)STM32中中断优先级理解

    很多人在配置STM32中断时对固件库中的这个函数NVIC_PriorityGroupConfig()——配置优先级分组方式,会很不理解,尤其是看中文翻译版的,因为中文翻译版里把这里翻译成“先占优先级和 ...

  9. 继承Prototype实现语句不能写在动态原型法中的理解

    阅读javascript高级编程中, 对动态原型法中写Prototype继承父类对象的不可行的现象,不甚理解. 书上说是技术原因,如下有问题代码: 但是把protype语句移到构造函数后面,就OK,如 ...

随机推荐

  1. kafka集群部署文档(转载)

    原文链接:http://www.cnblogs.com/luotianshuai/p/5206662.html Kafka初识 1.Kafka使用背景 在我们大量使用分布式数据库.分布式计算集群的时候 ...

  2. 【Consul】多数据中心

    Consul的一个关键特性是支持多数据中心.consul架构中提到是构建低耦合的多个数据中心,一个数据中心的网络连接问题或故障不在其他数据中心的可用性.每个数据中心都是独立运行,并且拥有私有的LAN ...

  3. Linux-Shell脚本编程-学习-5-Shell编程-使用结构化命令-if-then-else-elif

    if-then语句 if-then语句格式如下 if comman then command fi bash shell中的if语句可鞥会和我们接触的其他if语句的工作方式不同,bash shell的 ...

  4. Qt 实现脉搏检测-2,简陋的功能产品

    今天终于可以接上硬件来显示真是的脉搏情况了,上图 主要就是显示脉搏的心跳曲线,和IBI 数据来源是三个,串口,网口和蓝牙,目前只实现了串口,过程应该都是差不多的,监听,读取,解析,等硬件更新后,再次更 ...

  5. LSTM调参经验

    0.开始训练之前先要做些什么? 在开始调参之前,需要确定方向,所谓方向就是确定了之后,在调参过程中不再更改 1.根据任务需求,结合数据,确定网络结构. 例如对于RNN而言,你的数据是变长还是非变长:输 ...

  6. memcached简单介绍及在django中的使用

    什么是memcached? Memcached是一个高性能的分布式的内存对象缓存系统,全世界有不少公司采用这个缓存项目来构建大负载的网站,来分担数据库的压力.Memcached是通过在内存里维护一个统 ...

  7. websocket协议详解;

    websocket是基于http协议,借用http协议来完成连接阶段的握手: 当连接建立后,浏览器和服务器之间的通信就和http协议没有关系了,b.s之间只用websocket协议来完成基本通信. = ...

  8. [整理]docker内部时区修改的两种方法

    方法一 终端执行 date命令,查看宿主服务器的时区是否正确 如果正确: 执行 docker cp /etc/localtime 容器ID:/etc/localtime 将本地时间拷贝到docker内 ...

  9. 【iOS开发】iOS对UIViewController生命周期和属性方法的解析

    iOS对UIViewController生命周期和属性方法的解析 一.引言 作为MVC设计模式中的C,Controller一直扮演着项目开发中最重要的角色,它是视图和数据的桥梁,通过它的管理,将数据有 ...

  10. asp.net Forms登录核心方法

    登录核心方法: private void Signin(string curUserId) { System.Web.Security.FormsAuthenticationTicket tk = , ...