这个题乍一看觉得挺简单的,事实上却完全不是。首先,这个题看上去无脑直接刷就可以然而因为刷的次数远远大于木板的个数所以不行,然后开始考虑DP,自己一开始是这么想的,如果用f[t][i][j]表示刷t次时,前i块板子刷到第j个最大值是多少,然后前缀和优化了一小下,勉强打出了二逼DP,然后90,之后从网上科普了一下,发现这样如果有一种中间有一整块不用涂的木板,那么就会崩掉。如讨论里的那一个90,是同一个错因。

之后换用了思路,首先还是前缀和对0和1的计算,然后算出对于第i块木板,涂到第j格子时,涂了k次能有的最大的价值,然后再用一个数组储存第i块木板涂j次的最优解,f表示前i块,涂j次的最优解,不难得出结果。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define re register
#define ll long long
using namespace std;
int f[][],t,r,n,m ,c[][][],v[][],ans,g[][][];
string s;
int main()
{
cin>>n>>m>>t;
for(re int i=;i<=n;i++)
{
cin>>s;
for(re int j=;j<=m;j++)
{
c[i][j][]=c[i][j-][];
c[i][j][]=c[i][j-][];
c[i][j][s[j-]-'']++;//前缀和的计算。
}
}
for(re int i=;i<=n;i++)
for(re int j=;j<=m;j++)
for(re int k=;k<=m;k++)
for(re int l=;l<j;l++)
{
g[i][j][k]=max(g[i][j][k],g[i][l][k-]+max(c[i][j][]-c[i][l][],c[i][j][]-c[i][l][]));//以这个数组储存第i块j格子涂k次的最大值。
}
for(re int i=;i<=n;i++)
for(re int j=;j<=m;j++)
for(re int k=;k<=m;k++)
{
v[i][j]=max(v[i][j],g[i][k][j]);//这个数组储存第i块j次的。。
}
for(re int i=;i<=n;i++)
for(re int j=;j<=t;j++)
for(re int k=;k<=j;k++)
f[i][j]=max(f[i][j],f[i-][j-k]+v[i][k]);//dp数组求解。
cout<<f[n][t];
}

【P1947】笨笨当粉刷匠(DP+前缀和)的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  2. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  3. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  4. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. luogu 4158 粉刷匠 dp套dp

    dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...

  6. [luogu4158 SCOI2009] 粉刷匠(dp)

    传送门 Solution 把状态都记上暴力转移即可 Code //By Menteur_Hxy #include <queue> #include <cmath> #inclu ...

  7. 2014.7.8模拟赛【笨笨当粉刷匠】|bzoj1296 [SCOI]粉刷匠

    笨笨太好玩了,农田荒芜了,彩奖用光了,笨笨只好到处找工作,笨笨找到了一份粉刷匠的工作.笨笨有n条木板需要被粉刷.每条木板被分成m个格子,每个格子要被刷成红色或蓝色.笨笨每次粉刷,只能选择一条木板上一段 ...

  8. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  9. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  10. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

随机推荐

  1. 7、easyui 表单

    这是最后一个小节了,后面将会使用一个小项目来进一步实用讲解: 在之前的什么相关只是点都以及讲过了或者说涉及到过,如datagrid表格,树形菜单,布局面板panel,页签,拖放功能,只是在表格的属性细 ...

  2. Java_cpu飙升排查

    1.现象 top 2.根据上图找到进程ID=28790 3.查找28790下线占用cpu高的线程ID -o THREAD,tid,time 4.根据上图发现线程ID=29161,换算成16进制 pri ...

  3. linux用户与组管理

    普通用户的管理 用户管理的基本任务包括添加新用户.删除用户.修改用户属性以及对现有用户的访问参数进行设置.与密切 相关的文件包含/etc/passwd./etc/shadow以及/home目录下的文件 ...

  4. Android无线测试之—UiAutomator UiDevice API介绍三

    获取坐标与坐标点击 一.坐标相关的知识: 1)手机屏幕坐标:左上角开始到右下角结束 2)DP:设备独立像素,例如320像素显示到640像素上要拉伸一倍 3)Point:代表一个点(x,y),左上角的坐 ...

  5. 一张图玩转H5测试

    背景 随着各种H5页面的普及和运用,并深深的影响着我们各个业务的发展,前两年也对H5测试的有着不少积累,但都是根据项目的要求,这里测试下,那里测试下,今年上半年专门成立了H5测试研究虚拟小组,专门研究 ...

  6. python 获取exception 名字

    def func(): list = [] usr = input('username:') pwd = input('password:') try: list[4] # 这个是调用不了的,因为列表 ...

  7. Python3.6全栈开发实例[016]

    16.电影打分:程序先给出几个目前正在上映的电影列表. 由用户给每个电影投票.最终将该用户投票信息公布出来 lst = ['北京遇上西雅图', '解救吴先生', '美国往事', '西西里的美丽传说'] ...

  8. 剑指offer 面试32题

    面试32题: 题目:从上到下打印二叉树 题:不分行从上到下打印二叉树 解题代码: # -*- coding:utf-8 -*- # class TreeNode: # def __init__(sel ...

  9. CSS中input输入框点击时去掉外边框方法【outline:medium;】----CSS学习

    CSS 中添加 outline:medium; JS 控制焦点: $("#CUSTOM_PHONE").focus(function(event){ // this.attr(&q ...

  10. 分层架构下的纯JDBC事务控制简单解决方案【转】

    http://blog.csdn.net/qjyong/article/details/5464835 对目前的JavaEE企业应用开发来说,基本都会采用分层的架构, 这样可以分散关注.松散耦合.逻辑 ...