Codeforces #428 Div2 D
#428 Div2 D
题意
给出一些数,现在要求找出一些数满足 \(i_1 < i_2 < i_3 < ... < i_k\) 以及 \(gcd(a_{i_1}, a_{i_2}, ..., a_{i_k}) > 1\) ,记这些数的贡献为 \(k * gcd(a_{i_1}, a_{i_2}, ..., a_{i_k}) \) 。
求每种方案的贡献之和。
分析
不得不说和 hdu6053 很类似,其实还要简单不少。
考虑枚举 \(gcd\) ,我们可以找到因子有 \(gcd\) 这个数的数有多少个,假设有因子 \(2\) 的数有 \(x\) 个,那么这些数的贡献就是 \(2 * (1*C_{x}^{1}+2*C_{x}^{2}+..+x*C_{x}^{x})\) (通过打表可以发现规律),但是在枚举因子 \(2\) 的时候可能会把 \(2\) 的倍数作为因子形成的方案也考虑了,通过容斥去处理得到最后结果。
这里容斥类似于筛法的思想,实现和理解都更简单。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 2e5 + 10;
const int N = 1e6 + 10;
const int MOD = 1e9 + 7;
ll num[MAXN];
int a[N];
ll has[N];
int main() {
ll e = 1;
for(int i = 1; i < MAXN; i++) {
num[i] = (num[i - 1] * 2 + e) % MOD;
e = e * 2 % MOD;
}
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++) {
int x;
scanf("%d", &x);
a[x]++;
}
ll ans = 0;
for(int i = N - 1; i >= 2; i--) {
int s = 0;
for(int j = i; j < N; j += i) {
s += a[j];
}
has[i] = num[s];
for(int j = 2 * i; j < N; j += i) {
has[i] = (has[i] - has[j] + MOD) % MOD;
}
ans = (ans + 1LL * i * has[i]) % MOD;
}
printf("%I64d\n", ans);
return 0;
}
Codeforces #428 Div2 D的更多相关文章
- Codeforces #180 div2 C Parity Game
// Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...
- Codeforces #541 (Div2) - E. String Multiplication(动态规划)
Problem Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...
- Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)
Problem Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...
- Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)
Problem Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...
- Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)
Problem Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...
- 【Codeforces #312 div2 A】Lala Land and Apple Trees
# [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...
- codeforces round #428 div2
A:暴力模拟,能加就加,如果累计到了8就加上,每次累积 #include<bits/stdc++.h> using namespace std; int main() { ; scanf( ...
- Codeforces #263 div2 解题报告
比赛链接:http://codeforces.com/contest/462 这次比赛的时候,刚刚注冊的时候非常想好好的做一下,可是网上喝了个小酒之后.也就迷迷糊糊地看了题目,做了几题.一觉醒来发现r ...
- codeforces #round363 div2.C-Vacations (DP)
题目链接:http://codeforces.com/contest/699/problem/C dp[i][j]表示第i天做事情j所得到最小的假期,j=0,1,2. #include<bits ...
随机推荐
- Codeforces Round #391 div1 757F (Dominator Tree)
首先先膜杜教orz 这里简单说一下支配树的概念 支配树是对一个有向图来讲的 规定一个起点s,如果s到v的路径上必须经过某些点u,那么离s最近的点u就是v的支配点 在树上的关系就是,v的父亲是u. 一般 ...
- mysql共享表空间和独立表空间
innodb这种引擎,与MYISAM引擎的区别很大.特别是它的数据存储格式等. 对于innodb的数据结构,首先要解决两个概念性的问题: 共享表空间以及独占表空间. 什么是共享表空间和独占表空间 共享 ...
- KVO-基本使用方法-底层原理探究-自定义KVO-对容器类的监听
书读百变,其义自见! 将KVO形式以代码实现呈现,通俗易懂,更容易掌握 :GitHub -链接如果失效请自动搜索:https://github.com/henusjj/KVO_base 代码中有详 ...
- js 禁止鼠标和键盘行为
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 为什么 Java中1000==1000为false而100==100为true?AND "2+2=5"?
前提:我们知道,如果两个引用指向同一个对象,用==表示它们是相等的.如果两个引用指向不同的对象,用==表示它们是不相等的,即使它们的内容相同. 运行下面代码:
- js删除一个父元素下面的所有子元素
比如<div id="ok"><button tpye='button'>111111</button><p>22222</p ...
- 一维和二维ST模板
void init(){ ; i < n; i++) st[i][] = a[i]; ; ( << j) <= n; j++){ ; i + ( << j) - & ...
- Posted和Non-Posted传送方式
PCI总线规定了两类数据传送方式,分别是Posted和Non-Posted数据传送方式.其中使用Posted数据传送方式的总线事务也被称为Posted总线事务:而使用Non-Posted数据传送方式的 ...
- 【洛谷 P1364】医院设置(树的重心)
树的重心的定义: 树若以某点为根,使得该树最大子树的结点数最小,那么这个点则为该树的重心,一棵树可能有多个重心. 树的重心的性质: 1.树上所有的点到树的重心的距离之和是最短的,如果有多个重心,那么总 ...
- 应对ubuntu linux图形界面卡住的方法
有的时候,我的ubuntu图形界面会卡住,当然这个时候你可以重新启动,不过最好的办法应该是结束这个桌面进程 那桌面卡住了怎么来结束桌面进程呢? 这时候就需要打开tty了 按下键盘ctrl+alt+f1 ...