洛谷——P1586 四方定理
P1586 四方定理
题目描述
四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32和25=5^{2}25=52。给定的正整数nn,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32和25=3^{2}+4^{2}25=32+42视为一种方案。
输入输出格式
输入格式:
第一行为正整数tt(t\le 100t≤100),接下来tt行,每行一个正整数nn(n\le 32768n≤32768)。
输出格式:
对于每个正整数nn,输出方案总数。
输入输出样例
枚举
当前数最多由4个四方数组成,那么我们可以枚举这4个数,然后循环枚举,我们可以直接处理到最大的数,这样就可以不用处理t次了
然后我们再在美剧里面加一点剪枝就好了
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define n 182 #define N 40000 using namespace std; int m,t,a[n],ans[N],f[n],maxn; int read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } int main() { t=read(); ;i<=t;i++) a[i]=read(),maxn=max(maxn,a[i]); ;i<=n;i++) f[i]=i*i; ;i<=n;i++) { if(f[i]>maxn) break; for(int j=i;j<=n;j++) { if(f[i]+f[j]>maxn) break; for(int x=j;x<=n;x++) { if(f[i]+f[j]+f[x]>maxn) break; for(int y=x;y<=n;y++) if(f[i]+f[j]+f[x]+f[y]>maxn) break; else ans[f[i]+f[j]+f[x]+f[y]]++; } } } ;i<=t;i++) printf("%d\n",ans[a[i]]); ; }
洛谷——P1586 四方定理的更多相关文章
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷 P3834 卢卡斯定理 题解
题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...
- 【Luogu】P1586四方定理(DP)
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
随机推荐
- Git 删除服务器的远程分支
git push origin :分支名 可能会出现,在A机子操作,刷新下成功删除,但在B机子上还显示,再用下命令提示不存在该分支,只要再推送一个任意分支即可正常显示
- 给DOM元素绑定click事件也有学问
最简单的莫过于使用click方法: 1 <input id="btn" type="button" value="BUTTON" on ...
- bzoj 5099 [POI2018]Pionek 计算几何 极角排序
[POI2018]Pionek Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 269 Solved: 80[Submit][Status][Disc ...
- ansible 部署jdk
playbook 剧本如下 [root@sz_fy_virt_encrypt_33_239 x]# cat jdk.yml - hosts: web remote_user: opsadmin bec ...
- rsync安装使用详解
rsync是类unix系统下的数据镜像备份工具,从软件的命名上就可以看出来了——remote sync.它的特性如下: 可以镜像保存整个目录树和文件系统. 可以很容易做到保持原来文件的权限.时间.软硬 ...
- codeforces 111D
题目链接 D. Petya and Coloring time limit per test 5 seconds memory limit per test 256 megabytes input s ...
- GDSOI2015的某道题目
分析: 看到这个$3^i$就觉得很奇怪的样子...为什么一定要是$3^i$...而且不能重复使用... 不能重复使用就代表不会产生进位,那么一定是若干个$3^i$相加减的式子... 仔细观察,我们发现 ...
- Kubernetes : 多节点 k8s 集群实践
说明: 本文参考 『 Kubernetes 权威指南 』 第一章的案例. 需要说明的是, 这本书里有很多描述的东西和实践的案例不吻合. Kubernets 集群架构 架构图 Server List 节 ...
- NYOJ 349 Sorting It All Out (拓扑排序 )
题目链接 描述 An ascending sorted sequence of distinct values is one in which some form of a less-than ope ...
- bzoj 1798 维护序列seq 线段树
裸的线段树,注意标签下放就行了 多么痛的领悟,一定要开int64 /************************************************************** Pro ...