P1586 四方定理

题目描述

四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32和25=5^{2}25=52。给定的正整数nn,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32和25=3^{2}+4^{2}25=32+42视为一种方案。

输入输出格式

输入格式:

第一行为正整数tt(t\le 100t≤100),接下来tt行,每行一个正整数nn(n\le 32768n≤32768)。

输出格式:

对于每个正整数nn,输出方案总数。

输入输出样例

输入样例#1: 复制

1
2003
输出样例#1: 复制

48

枚举

当前数最多由4个四方数组成,那么我们可以枚举这4个数,然后循环枚举,我们可以直接处理到最大的数,这样就可以不用处理t次了

然后我们再在美剧里面加一点剪枝就好了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define n 182
#define N 40000
using namespace std;
int m,t,a[n],ans[N],f[n],maxn;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    t=read();
    ;i<=t;i++)
     a[i]=read(),maxn=max(maxn,a[i]);
    ;i<=n;i++)
     f[i]=i*i;
    ;i<=n;i++)
    {
        if(f[i]>maxn) break;
        for(int j=i;j<=n;j++)
        {
            if(f[i]+f[j]>maxn) break;
            for(int x=j;x<=n;x++)
            {
                if(f[i]+f[j]+f[x]>maxn) break;
                for(int y=x;y<=n;y++)
                 if(f[i]+f[j]+f[x]+f[y]>maxn) break;
                 else ans[f[i]+f[j]+f[x]+f[y]]++;
            }
        }
    }
    ;i<=t;i++)
     printf("%d\n",ans[a[i]]);
    ;
}

洛谷——P1586 四方定理的更多相关文章

  1. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  2. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  3. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  4. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. 洛谷 P3834 卢卡斯定理 题解

    题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...

  6. 【Luogu】P1586四方定理(DP)

    题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...

  7. luogu P1586 四方定理(背包)

    题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...

  8. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  9. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

随机推荐

  1. 洛谷 P3143 [USACO16OPEN]钻石收藏家Diamond Collector 解题报告

    P3143 [USACO16OPEN]钻石收藏家Diamond Collector 题目描述 Bessie the cow, always a fan of shiny objects, has ta ...

  2. 大学本科毕业论文——LanguageTool语法校正规则库的开发

    原创率超高的毕业论文,基本没有太多抄袭的东西,论述观点完全是1年半前的我的想法,或许bug很多,仅作发布参考,不作讨论. 参考预览图: 只读pdf版本下载地址: http://download.csd ...

  3. shell脚本应用

    解析乱的日志文件到临时文件中,然后用awk  1004  cd /usr/local  1005  ll  1006  cd pttmsg/  1007  ll  1008  cd msgbin-2/ ...

  4. Docker Community Edition for CentOS

    Docker CE for CentOS Docker CE for CentOS distribution is the best way to install the Docker platfor ...

  5. tomcat部署多个项目,通过域名解析访问不同的网站

    转摘自:http://qinyinbolan.blog.51cto.com/4359507/1211064 说明: 1.首先需要有多个域名,同时指向一个IP地址. 例如:域名:www.bbb.com, ...

  6. Java并发(10)- 简单聊聊JDK中的七大阻塞队列

    引言 JDK中除了上文提到的各种并发容器,还提供了丰富的阻塞队列.阻塞队列统一实现了BlockingQueue接口,BlockingQueue接口在java.util包Queue接口的基础上提供了pu ...

  7. jspersonft有关Table数据绑定(一)

    一:前言 在公司来就学着做报表,觉得这个报表学着还是很有意义的.jspersonft我在网上搜了一些有关的资料但是不是很多,现在就是学一点就记载一点.好记性不如烂笔头嘛! 二:在jspersonft定 ...

  8. [转]使用 LDAP OU 限制访问

    使用 LDAP OU 限制访问 http://www-01.ibm.com/support/knowledgecenter/api/content/SSEP7J_10.2.2/com.ibm.swg. ...

  9. 【NOIP1999】邮票面值设计 dfs+dp

    题目传送门 这道题其实就是找一波上界比较麻烦 用一波 背包可以推出上界mx 所以新加入的物品价值一旦大于mx+1,显然就会出现断层,所以可以以maxm+1为枚举上界,然后这样进行下一层的dfs. 这样 ...

  10. <script>中的async与defer属性

    1.script元素中的defer属性 1.1说明 使用该属性可以使脚本延迟到文档完全被解析和显示之后再按照原本的顺序执行,即告诉浏览器立即下载脚本,但延迟执行,该属性只对外部脚本有效 1.2使用方法 ...