P1586 四方定理

题目描述

四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32和25=5^{2}25=52。给定的正整数nn,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32和25=3^{2}+4^{2}25=32+42视为一种方案。

输入输出格式

输入格式:

第一行为正整数tt(t\le 100t≤100),接下来tt行,每行一个正整数nn(n\le 32768n≤32768)。

输出格式:

对于每个正整数nn,输出方案总数。

输入输出样例

输入样例#1: 复制

1
2003
输出样例#1: 复制

48

枚举

当前数最多由4个四方数组成,那么我们可以枚举这4个数,然后循环枚举,我们可以直接处理到最大的数,这样就可以不用处理t次了

然后我们再在美剧里面加一点剪枝就好了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define n 182
#define N 40000
using namespace std;
int m,t,a[n],ans[N],f[n],maxn;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    t=read();
    ;i<=t;i++)
     a[i]=read(),maxn=max(maxn,a[i]);
    ;i<=n;i++)
     f[i]=i*i;
    ;i<=n;i++)
    {
        if(f[i]>maxn) break;
        for(int j=i;j<=n;j++)
        {
            if(f[i]+f[j]>maxn) break;
            for(int x=j;x<=n;x++)
            {
                if(f[i]+f[j]+f[x]>maxn) break;
                for(int y=x;y<=n;y++)
                 if(f[i]+f[j]+f[x]+f[y]>maxn) break;
                 else ans[f[i]+f[j]+f[x]+f[y]]++;
            }
        }
    }
    ;i<=t;i++)
     printf("%d\n",ans[a[i]]);
    ;
}

洛谷——P1586 四方定理的更多相关文章

  1. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  2. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  3. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  4. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. 洛谷 P3834 卢卡斯定理 题解

    题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...

  6. 【Luogu】P1586四方定理(DP)

    题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...

  7. luogu P1586 四方定理(背包)

    题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...

  8. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  9. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

随机推荐

  1. [洛谷P4329][COCI2006-2007#1] Bond

    题目大意:有$n$个人有$n$个任务,每个人执行每个任务有不同的成功率,每个人只能执行一个任务,求所有任务都执行的总的成功率. 题解:可以跑最大费用最大流,把成功率取个$log$,最后$exp$回去就 ...

  2. WIndows 相关知识

    Windows服务 图解WinXP局域网共享设置步骤 Win10如何搭建FTP服务器以实现快速传输文件 强大工具psexec工具用法简介 BIOS和CMOS的区别 系统CLSID简介和小技巧

  3. 《软件调试的艺术》学习笔记——GDB使用技巧摘要

    <软件调试的艺术>学习笔记——GDB使用技巧摘要 <软件调试的艺术>,因为名是The Art of Debugging with GDB, DDD, and Eclipse. ...

  4. 【BZOJ 3144】 [Hnoi2013]切糕 真·最小割

    一开始一脸懵逼后来发现,他不就是割吗,我们只要满足条件就割就行了,于是我们把他连了P*Q*R条边,然而我们要怎样限制D呢?我们只要满足对于任意相邻的两条路,只要其有个口大于D就不行就好了因此我们只要把 ...

  5. HZOI String STL的正确用法

                                                                      String          3s 512 MB描述硬盘中里面有n ...

  6. 用原生JavaScript做个简单的回到顶部

    很多网页在下方都会放置一个“返回顶部”按钮,尤其是页面底部没有导航的网页,这样可以帮助访客重新找到导航或者重温一遍广告(想得真美).随着近几年来 JavaScript 的应用日渐广泛,滑动效果无处不在 ...

  7. 从零开始学习MXnet(五)MXnet的黑科技之显存节省大法

    写完发现名字有点拗口..- -# 大家在做deep learning的时候,应该都遇到过显存不够用,然后不得不去痛苦的减去batchszie,或者砍自己的网络结构呢? 最后跑出来的效果不尽如人意,总觉 ...

  8. spring中<bean>中parent标签的使用

    简介:spring 中parent标签是指:某个<bean>的父类.这个类可以覆盖parent的属性, 代码如下: Parent类的代码如下: package com.timo.domai ...

  9. CSS样式实现溢出超出DIV边框宽度高度的内容自动隐藏方法

    CSS样式实现溢出超出DIV边框宽度高度的内容自动隐藏方法 平时我们布局时候,有的文字内容多了会超过溢出我们限制的高度,有的图片会撑破DIV,让网页错位变乱. 这样我们就需要解决如何使用CSS来超出设 ...

  10. jsp分页完善版

    明天要考网络工程师了,而且这两天校运会,把那个分页的完善了下,明天考试,祈祷吧,我根本都没看书啊,所以只能去长见识了.100大洋啊,下个学期我想考考证了,不然以后出去麻烦了.呵呵,不多说还是说说自己对 ...