HDU 6373.Pinball -简单的计算几何+物理受力分析 (2018 Multi-University Training Contest 6 1012)
6373.Pinball
物理受力分析题目。
画的有点丑,通过受力分析,先求出θ角,为arctan(b/a),就是atan(b/a),然后将重力加速度分解为垂直斜面的和平行斜面的,垂直斜面的记为a1,平行斜面的记为a2。
a1=g*sinθ,a2=g*cosθ,然后算出小球到斜面的侧面高度h,以及小球到斜面底部的距离l,小球走h米高度所花费的时间t2为弹一次花费的时间,然后通过ll花费的时间t1为总时间,直接算倍数就是答案。
具体的代码注释。
代码:
//1012-6373-几何-物理题目
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=1e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); int main()
{
int t;
cin>>t;
while(t--){
double a,b,x,y;
cin>>a>>b>>x>>y;
double g=9.8;//重力加速度
double sita=atan(b/a);//斜面倾角θ
double a1=g*sin(sita);//垂直斜面的加速度
double a2=g*cos(sita);//平行斜面的加速度
double h=(y+b/a*x)*cos(sita);//斜面高h
double l=(y+b/a*x)*sin(sita)+((-)*x)/cos(sita);//小球到斜面底的距离l
double t1=sqrt(*l/a1);//小球弹一次的时间
double t2=sqrt(*h/a2);//总的时间
int ans=;//开始的算一次
ans+=(t1-t2)/t2/;//去掉开始的
cout<<ans<<endl;
}
}
我是傻子。
HDU 6373.Pinball -简单的计算几何+物理受力分析 (2018 Multi-University Training Contest 6 1012)的更多相关文章
- HDU 6373 Pinball
Pinball Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total S ...
- HDU 4617 Weapon (简单三维计算几何,异面直线距离)
Weapon Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Subm ...
- HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)
6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...
- hdu 3938 Portal(并查集+离线+kruskal)2011 Multi-University Training Contest 10
搜了题解才把题搞明白.明白之后发现其实题意很清晰,解题思路也很清晰,只是题目表述的很不清晰…… 大意如下—— 给你一个无向图,图中任意两点的距离是两点间所有路径上的某一条边,这条边需要满足两个条件:1 ...
- hdu 2818 Building Block(加权并查集)2009 Multi-University Training Contest 1
题意: 一共有30000个箱子,刚开始时都是分开放置的.接下来会有两种操作: 1. M x y,表示把x箱子所在的一摞放到y箱子那一摞上. 2. C y,表示询问y下方有多少个箱子. 输入: 首行输入 ...
- hdu 3047 Zjnu Stadium(加权并查集)2009 Multi-University Training Contest 14
题意: 有一个运动场,运动场的坐席是环形的,有1~300共300列座位,每列按有无限个座位计算T_T. 输入: 有多组输入样例,每组样例首行包含两个正整数n, m.分别表示共有n个人,m次操作. 接下 ...
- hdu 3461 Code Lock(并查集)2010 ACM-ICPC Multi-University Training Contest(3)
想不到这还可以用并查集解,不过后来证明确实可以…… 题意也有些难理解—— 给你一个锁,这个所由n个字母组成,然后这个锁有m个区间,每次可以对一个区间进行操作,并且区间中的所有字母要同时操作.每次操作可 ...
- HDU 5775 Bubble Sort(线段树)(2016 Multi-University Training Contest 4 1012)
原址地址:http://ibupu.link/?id=31 Problem Description P is a permutation of the integers from 1 to N(ind ...
- HDU 6330.Problem L. Visual Cube-模拟到上天-输出立方体 (2018 Multi-University Training Contest 3 1012)
6330.Problem L. Visual Cube 这个题就是输出立方体.当时写完怎么都不过,后来输出b<c的情况,发现这里写挫了,判断失误.加了点东西就过了,mdzz... 代码: //1 ...
随机推荐
- 【bzoj1455】罗马游戏 可并堆+并查集
题目描述 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻.他决定玩这样 ...
- Lyft Level 5 Challenge 2018 - Final Round Div. 1没翻车记
夜晚使人着迷.没有猝死非常感动. A:显然对于水平线段,只有横坐标的左端点为1的时候才可能对答案产生影响:对于竖直直线,如果要删一定是删去一段前缀.枚举竖直直线删到哪一条,记一下需要删几条水平线段就可 ...
- thymeleaf 布局layout
以前写过一篇使用thymeleaf实现div中加载html 大部分内容都没问题,只是部分知识已经过时了. 重新记录: 依赖依然是 <dependency> <groupId>n ...
- [Leetcode] add binary 二进制加法
Given two binary strings, return their sum (also a binary string). For example,a ="11"b =& ...
- BZOJ3243 [Noi2013]向量内积 【乱搞】
题目链接 BZOJ3243 题解 模数只有\(2\)或\(3\),可以大力讨论 如果模数为\(2\),乘积结果只有\(1\)或\(0\) 如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量 ...
- CDQZ 2017 游记
Day0: 提前放了一整天假,颓过去了.老吕让我去给B层的讲课,ppt还没做,只能在飞机上赶了QAQ.然后从上午到了衡水就一直在路上或者天上,到了晚上才到学校,然而ppt还是没有做完.还有,鄂尔多斯真 ...
- 【BZOJ 4514】[Sdoi2016]数字配对 费用流
利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #inc ...
- 如何设置项目encoding为utf-8
1.鼠标右键点击项目,选择[properties] 2.选择[Resource],在Text file encoding里面选择UTF-8,点击[ok] 大功告成! 木头大哥所发的文章均基于自身实践, ...
- visio2013安装提示找不到Office.zh_cn\officeMUI.mis officemui.xml(转)
windoes10 已经安装office2013后,想安装Visio2013,报错如题所示.解决方法我采用的是方法二:解压缩office2013的ISO包,解压缩Visio2013的ISO包,安装Vi ...
- lwIP内存管理机制
lwip的内存管理机制,我们以enet_lwip这个例程为例. 在使用lwip的时候,我们可以使用两种形式的内存,一种是heap(mem.c文件-mem_malloc()),一种是pool(memp. ...