bzoj 5291: [Bjoi2018]链上二次求和
Description
有一条长度为n的链(1≤i<n,点i与点i+1之间有一条边的无向图),每个点有一个整数权值,第i个点的权值是
a_i。现在有m个操作,每个操作如下:
操作1(修改):给定链上两个节点u、v和一个整数d,表示将链上u到v唯一的简单路径上每个点权值都加上d。
操作2(询问):给定两个正整数L、r,表示求链上所有节点个数大于等于L且小于等于r的简单路径节点权值和之和。
由于答案很大,只用输出对质数1000000007取模的结果即可。
一条节点个数为k的简单路径节点权值和为这条上所有k个节点(包括端点)的权值之和,
而本题中要求是对所有满足要求的简单路径,求这一权值和的和。
由于是无向图,路径也是无向的,即点1到点2的路径与点2到点1的路径是同一条,不要重复计算。
Solution
开始想考虑每个点的贡献,然后发现要分三段讨论,并且维护的东西有点多,写不下去了
最后直接模拟题意:
设 \(s_i\) 为 \(a_i\) 的前缀和, \(ss_i\) 为 \(s_i\) 的前缀和
求 \(\sum_{k=l}^r\sum_{i=k}^n (s_i-s_{i-k})\)
\(\sum_{k=l}^r (\sum_{i=k}^{n}s_i-\sum_{i=0}^{n-k}s_i)\)
\(\sum_{k=l}^r (ss_n-ss_{k-1}-ss_{n-k})\)
\((r-l+1)*ss_n-\sum_{k=l-1}^{r-1}ss_k-\sum_{k=n-r}^{n-l}ss_k\)
线段树维护 \(ss\) 就好了
关于修改:
分两段考虑:
\(l<=i<=r\),\(ss_i\) 加上 \(d*\frac{(i-l+1)*(i-l+2)}{2}\)
\(r<i<=n\), \(ss_i\) 加上 \(d*(\frac{(r-l+1)*(r-l+2)}{2}+(r-l+1)*(i-r)*d)\)
分别是关于 \(i\) 的二次函数和一次函数
维护系数 \(a,b,c\) 就好了
#include<bits/stdc++.h>
#define ls (o<<1)
#define rs (o<<1|1)
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=2e5+10,mod=1e9+7,inv=166666668,inv2=500000004;
int n,Q,a[N],s[N],ss[N],tr[N*4],A[N*4],B[N*4],C[N*4];
int la,lb,lc;
inline int S1(int l,int r){return (1ll*(l+r)*(r-l+1)>>1)%mod;}
inline int S2(int l,int r){
int rr=1ll*r*(r+1)%mod*((r<<1)+1)%mod;l--;
int ll=1ll*l*(l+1)%mod*((l<<1)+1)%mod;
return 1ll*(rr-ll+mod)*inv%mod;
}
inline void upd(int o){tr[o]=(tr[ls]+tr[rs])%mod;}
inline void build(int l,int r,int o){
if(l==r){tr[o]=ss[l];return ;}
int mid=(l+r)>>1;
build(l,mid,ls);build(mid+1,r,rs);
upd(o);
}
inline void pushdown(int o,int l,int r){
if(!A[o]&&!B[o]&&!C[o])return ;
int mid=(l+r)>>1;
A[ls]=(A[ls]+A[o])%mod;B[ls]=(B[ls]+B[o])%mod;C[ls]=(C[ls]+C[o])%mod;
A[rs]=(A[rs]+A[o])%mod;B[rs]=(B[rs]+B[o])%mod;C[rs]=(C[rs]+C[o])%mod;
tr[ls]=(tr[ls]+1ll*S2(l,mid)*A[o])%mod;
tr[ls]=(tr[ls]+1ll*S1(l,mid)*B[o])%mod;
tr[ls]=(tr[ls]+1ll*(mid-l+1)*C[o])%mod;
tr[rs]=(tr[rs]+1ll*S2(mid+1,r)*A[o])%mod;
tr[rs]=(tr[rs]+1ll*S1(mid+1,r)*B[o])%mod;
tr[rs]=(tr[rs]+1ll*(r-mid)*C[o])%mod;
A[o]=B[o]=C[o]=0;
}
inline void mdf(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se){
A[o]=(A[o]+la)%mod;B[o]=(B[o]+lb)%mod;C[o]=(C[o]+lc)%mod;
tr[o]=(tr[o]+1ll*S2(l,r)*la)%mod;
tr[o]=(tr[o]+1ll*S1(l,r)*lb)%mod;
tr[o]=(tr[o]+1ll*(r-l+1)*lc)%mod;
return ;
}
pushdown(o,l,r);
int mid=(l+r)>>1;
if(se<=mid)mdf(l,mid,ls,sa,se);
else if(sa>mid)mdf(mid+1,r,rs,sa,se);
else mdf(l,mid,ls,sa,mid),mdf(mid+1,r,rs,mid+1,se);
upd(o);
}
inline int qry(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se)return tr[o];
pushdown(o,l,r);
int mid=(l+r)>>1;
if(se<=mid)return qry(l,mid,ls,sa,se);
if(sa>mid)return qry(mid+1,r,rs,sa,se);
return (qry(l,mid,ls,sa,mid)+qry(mid+1,r,rs,mid+1,se))%mod;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>Q;
for(int i=1;i<=n;i++)
gi(a[i]),s[i]=(s[i-1]+a[i])%mod,ss[i]=(ss[i-1]+s[i])%mod;
build(1,n,1);
int op,x,y,z;
while(Q--){
gi(op);gi(x);gi(y);
if(x>y)swap(x,y);
if(op==1){
gi(z);
z=1ll*z*inv2%mod;
la=z;lb=1ll*(3-2*x)*z%mod;lc=1ll*z*((1ll*x*x-3*x+2)%mod)%mod;
if(lb<0)lb+=mod;if(lc<0)lc+=mod;
mdf(1,n,1,x,y);
if(y<n){
z=1ll*z*2%mod;
la=0;lb=1ll*(y-x+1)*z%mod;
lc=(1ll*z*((1ll*(y-x+1)*(y-x+2)/2-1ll*(y-x+1)*y)%mod))%mod;
if(lc<0)lc+=mod;
mdf(1,n,1,y+1,n);
}
}
else{
int ans=1ll*(y-x+1)*qry(1,n,1,n,n)%mod;
if(y-1>0)ans=(1ll*ans-qry(1,n,1,max(x-1,1),y-1)+mod)%mod;
if(n-x>0)ans=(1ll*ans-qry(1,n,1,max(n-y,1),n-x)+mod)%mod;
printf("%d\n",ans);
}
}
return 0;
}
bzoj 5291: [Bjoi2018]链上二次求和的更多相关文章
- 【BZOJ5291】[BJOI2018]链上二次求和(线段树)
[BZOJ5291][BJOI2018]链上二次求和(线段树) 题面 BZOJ 洛谷 题解 考虑一次询问\([l,r]\)的答案.其中\(S\)表示前缀和 \(\displaystyle \sum_{ ...
- BZOJ5291/洛谷P4458/LOJ#2512 [Bjoi2018]链上二次求和 线段树
原文链接http://www.cnblogs.com/zhouzhendong/p/9031130.html 题目传送门 - LOJ#2512 题目传送门 - 洛谷P4458 题目传送门 - BZOJ ...
- BZOJ5291 BJOI2018链上二次求和(线段树)
用线段树对每种长度的区间维护权值和. 考虑区间[l,r]+1对长度为k的区间的贡献,显然其为Σk-max(0,k-i)-max(0,k-(n-i+1)) (i=l~r). 大力展开讨论.首先变成Σk- ...
- [BZOJ5291][BJOI2018]链上二次求和(线段树)
感觉自己做的麻烦了,但常数似乎不算差.(只是Luogu最慢的点不到2s本地要跑10+s) 感觉我的想法是最自然的,但不明白为什么网上似乎找不到这种做法.(不过当然所有的做法都是分类大讨论,而我的方法手 ...
- 2018.01.04 bzoj5291: [Bjoi2018]链上二次求和(线段树)
传送门 线段树基础题. 题意:给出一个序列,要求支持区间加,查询序列中所有满足区间长度在[L,R][L,R][L,R]之间的区间的权值之和(区间的权值即区间内所有数的和). 想题555分钟,写题202 ...
- loj2512 [BJOI2018]链上二次求和
传送门 分析 咕咕咕 代码 #include<iostream> #include<cstdio> #include<cstring> #include<st ...
- 洛谷P4458 /loj#2512.[BJOI2018]链上二次求和(线段树)
题面 传送门(loj) 传送门(洛谷) 题解 我果然是人傻常数大的典型啊-- 题解在这儿 //minamoto #include<bits/stdc++.h> #define R regi ...
- 「BJOI2018」链上二次求和
「BJOI2018」链上二次求和 https://loj.ac/problem/2512 我说今天上午写博客吧.怕自己写一上午,就决定先写道题. 然后我就调了一上午线段树. 花了2h找到lazy标记没 ...
- 【LOJ】#2512. 「BJOI2018」链上二次求和
题面 题解 转化一下可以变成所有小于等于r的减去小于等于l - 1的 然后我们求小于等于x的 显然是 \(\sum_{i = 1}^{n} \sum_{j = 1}^{min(i,x)} sum[i] ...
随机推荐
- Android学习笔记 Gallery图库组件的使用
activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android&qu ...
- shell传参给matlab问题解决办法
之前需要通过shell脚本传参给matlab程序,但是遇到一些问题,现将我遇到的问题分享出来,给遇到同样问题的人一些借鉴. shell部分脚本Execl.sh: /usr/bin/python /ho ...
- 【spring源码】bean的实例化(转载)
首先来看一段代码,看过上一节的朋友肯定对这段代码并不陌生.这一段代码诠释了Spring加载bean的完整过程,包括读取配置文件,扫描包,加载类,实例化bean,注入bean属性依赖. 上一节介绍了Sp ...
- SpringMVC异常的使用
1.创建一个异常类,需要extend RuntimeException,继承父类中所有的方法 2.局部异常,仅能处理这个Controller中的异常 在Controller中添加异常处理方法 @Exc ...
- UML之用例图详解
原文链接:https://blog.csdn.net/mj_ww/article/details/53020080 UML,即Unified Model Language,统一建模语言.百度百科对他的 ...
- centos虚拟机设置静态ip
1.虚拟机网络配置设置为桥接模式 2.设置配置文件: vi /etc/sysconfig/network-scripts/ifcfg-ens33 DEVICE=ens33 HWADDR=:0c::c3 ...
- 洛谷 P1149 火柴棒等式
嗯.... 这道题好讨厌啊!!!! 一开始莫名RE,然后发现数组小了,然后发现后面几个点总是WA,原来推的少了.... 并且这道题的思路真的好水啊!! 先看一下题: 题目描述 给你n根 ...
- day--42 前端基础小结
前端基础总结 一:前端实现的原理: 小实例: 01:第一步:创建一个socket服务端: import socket server=socket.socket() ip_port=("127 ...
- C++_类继承4-访问控制protected
public和private来控制对类成员的访问. 还存在另外一个访问类别,这种类别用关键字protected表示.protected和private相似,在类外只能用公有类成员来访问protecte ...
- openmpi-3.0.1超线程报错问题
先简单记录一下,虽然还有一些疑惑没有解决. 之前安装openmpi是用的命令安装,版本比较低,mfix并行总出现死锁问题,于是想看看是不是openmpi版本导致,虽然目前还未找到具体原因,但是先记录下 ...