hdu 3641 数论 二分求符合条件的最小值数学杂题
http://acm.hdu.edu.cn/showproblem.php?pid=3641
学到:
1、二分求符合条件的最小值
/*====================================================
二分查找符合条件的最小值
======================================================*/
ll solve()
{
__int64 low = 0, high = INF, mid ;
while(low <= high){
mid = (low + high) >> 1;
// printf("%d&&\n",mid);
if(C(mid)) high = mid - 1;
else low = mid + 1;
}
return low;
}
2、求x!中prime[i]的个数
for(ll k=prm[i];k<=x;k*=prm[i])
{
sum+=x/k; ///
if(sum>=num[prm[i]])break;
}
牛逼的代码。解释例如以下:
比方x=16,prm[i]=2。一般的思路是2,4,6,8,10,12,14,16 算出这几个数的因子2的个数和,由于4,8,16等不止包括一个因子,所以不是一重循环就能够搞的
这个代码在O(logn)搞了 方法是 k*=prm[i] 比方包括2的平方这个因子的数是4,8,16,那么第一次k=2的时候已经加过一次1,当k*=2 即k==4的时候。又加了一个1,也就相当于考虑上2的二次, 不错的代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <iostream>
#include <iomanip>
#include <cmath>
#include <map>
#include <set>
#include <queue>
using namespace std; #define ls(rt) rt*2
#define rs(rt) rt*2+1
#define ll long long
#define ull unsigned long long
#define rep(i,s,e) for(int i=s;i<e;i++)
#define repe(i,s,e) for(int i=s;i<=e;i++)
#define CL(a,b) memset(a,b,sizeof(a))
#define IN(s) freopen(s,"r",stdin)
#define OUT(s) freopen(s,"w",stdout)
const ll ll_INF = ((ull)(-1))>>1;
const double EPS = 1e-8;
const ll INF = ll_INF/2;//99999999999999999999;///ll_INF;// const int MAXN =110;
const int N = 110;
const int M = N;
int prmcnt;
bool is[N]; int prm[M];
int getprm(int n){
int i, j, k = 0;
int s, e = (int)(sqrt(0.0 + n) + 1);
memset(is, 1, sizeof(is));
prm[k++] = 2; is[0] = is[1] = 0;
for(i = 4; i < n; i += 2) is[i] = 0;
for(i = 3; i < e; i += 2) if(is[i]) {
prm[k++] = i;
for(s = i * 2, j = i * i; j < n; j += s)
is[j] = 0;
// 由于j是奇数,所以+奇数i后是偶数,不必处理! }
for( ; i < n; i += 2) if(is[i]) prm[k++] = i;
return k; // 返回素数的个数
} ll a[MAXN],b[MAXN];
ll num[MAXN]; ll getnum(ll t, ll pm)
{
ll ret=0;
while(t%pm == 0)
{
ret++;
t/=pm;
}
return ret;
} bool C(ll x)
{
ll sum=0;
for(int i=0;i<prmcnt;i++)
if(num[prm[i]])///
{
sum=0;
for(ll k=prm[i];k<=x;k*=prm[i])
{
sum+=x/k; ///
if(sum>=num[prm[i]])break;
}
if(sum<num[prm[i]])return 0;
}
return 1;
} /*ll solve()
{
ll d=0,up=INF,mid;
while(up>d+1)
{
mid=(d+up)/2;
if(C(mid))up=mid;
else d=mid;
}
return up;
}*/
ll solve()
{
__int64 low = 0, high = INF, mid ;
while(low <= high){
mid = (low + high) >> 1;
// printf("%d&&\n",mid);
if(C(mid)) high = mid - 1;
else low = mid + 1;
}
return low;
} int main()
{
//IN("hdu3641.txt");
prmcnt=getprm(105);
int ncase;
int n;
scanf("%d",&ncase);
while(ncase--)
{
CL(num,0);
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%I64d%I64d",&a[i],&b[i]);
for(int i=0;i<n;i++)
{
for(int j=0;j<prmcnt;j++)
{
if(a[i]%prm[j] == 0)
{
num[prm[j]]+=getnum(a[i],prm[j])*b[i];
}
}
}
printf("%I64d\n",solve());
}
return 0;
}
hdu 3641 数论 二分求符合条件的最小值数学杂题的更多相关文章
- HDU 4651 数论 partition 求自然数的拆分数
别人的解题报告: http://blog.csdn.net/zstu_zlj/article/details/9796087 我的代码: #include <cstdio> #define ...
- hdu 4432 数学杂题
http://acm.hdu.edu.cn/showproblem.php?pid=4432 6分钟写的代码,一上午去调试,, 哎,一则题目没看懂就去写了,二则,哎,,恶心了.在坚持几天然后ACM退役 ...
- codeforce 1070 E Getting Deals Done(二分求最大化最小值)
Polycarp has a lot of work to do. Recently he has learned a new time management rule: "if a tas ...
- HDU 2035 人见人爱A^B(二分求幂,快速求幂)
题意:求A的B次方的后三位数字 思路1:常规求幂,直接取余求解 代码: #include<iostream> #include<cstdio> using namespace ...
- Codeforces 955C - Sad powers(数论 + 二分)
链接: http://codeforces.com/problemset/problem/955/C 题意: Q次询问(1≤Q≤1e5),每次询问给出两个整数L, R(1≤L≤R≤1e18),求所有符 ...
- hdu 3681(bfs+二分+状压dp判断)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3681 思路:机器人从出发点出发要求走过所有的Y,因为点很少,所以就能想到经典的TSP问题.首先bfs预 ...
- OpenJudge计算概论-求满足条件的3位数
/*======================================================================== 求满足条件的3位数 总时间限制: 1000ms 内 ...
- 寻找符合条件的最短子字符串——SLIDING WINDOW
简介 用一个可伸缩的窗口遍历字符串,时间复杂度大致为O(n).适用于“寻找符合某条件的最小子字符串”题型. 题目 链接 求某字符串T中含有某字符串S的所有字符的最小子字符串.如果不存在则返回" ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
随机推荐
- CF 1003D Coins and Queries【位运算/硬币值都为2的幂/贪心】
Polycarp has n coins, the value of the i-th coin is ai. It is guaranteed that all the values are int ...
- Wannafly挑战赛17 A 走格子【矩阵行走/模拟】
[链接]:A [分析]:可以设置方向数组和标记数组.当不合法(越界/访问过)就转向,转向可以用now=(now+1)%4 [代码]: #include <bits/stdc++.h> #d ...
- Python与数据结构[4] -> 散列表[2] -> 开放定址法与再散列的 Python 实现
开放定址散列法和再散列 目录 开放定址法 再散列 代码实现 1 开放定址散列法 前面利用分离链接法解决了散列表插入冲突的问题,而除了分离链接法外,还可以使用开放定址法来解决散列表的冲突问题. 开放定 ...
- MySQL 8.0.13安装教程(windows 64位) (转)
官先去网下载点击MySQL的下载 下载完成后解压 解压完是这个样子 配置初始化的my.ini的文件解压后的目录并没有my.ini文件,没关系可以自行创建.在安装根目录下添加my.ini(新建文本文件, ...
- 5.3类集(java学习笔记)集合的输出
一.集合的输出 迭代输出:Iteratror接口 在输出集合时,最标准的方法是使用迭代器迭代输出. 1,List中的迭代器. Iterator中包含三个方法: hasNex()t判断集合内是否有元素存 ...
- angular2学习资源汇总
文档博客书籍类 官方网站: https://angular.io 中文站点: https://angular.cn Victor的blog(Victor是Angular路由模块的作者): https: ...
- TCP长连接与短连接的区别(转)
1. TCP连接 当网络通信时采用TCP协议时,在真正的读写操作之前,server与client之间必须建立一个连接,当读写操作完成后,双方不再需要这个连接时它们可以释放这个连接,连接的建立是需要三次 ...
- [转] matlab调用opencv函数的配置
原文地址百度账户 aleasa123 方式1 1. 首先保证vs2010能正确调用opencv函数, 2. Matlab中选择编译器,操作如下: 打开matlab2012,输入mex –setup ...
- 【spring boot】spring boot中使用定时任务配置
spring boot中使用定时任务配置 =============================================================================== ...
- Linux中断(interrupt)子系统之一:中断系统基本原理
这个中断系列文章主要针对移动设备中的Linux进行讨论,文中的例子基本都是基于ARM这一体系架构,其他架构的原理其实也差不多,区别只是其中的硬件抽象层.内核版本基于3.3.虽然内核的版本不断地提升,不 ...