1 查看支持Java的redis客户端

  本博文采用 Jedis 作为redis客户端,采用 commons-pool2 作为连接redis服务器的连接池

2 下载相关依赖与实战

  2.1 到 Repository官网下载jar包

    jedis

<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.</version>
</dependency>

   commons-pool2

<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-pool2 -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
<version>2.5.</version>
</dependency>

  2.2 传统使用(eclipse)

    准备:创建一个普通的Java项目

    2.2.1 添加jar包

      在项目的根目录下创建一个lib文件夹,并将下载好的两个jar包添加到lib文件夹里面

      

    2.2.2 将jar包添加到项目构建路径中

      选中lib中的jar包 -> 右键 -> build path -> add to build path

    2.2.3 在build path中查看

      项目文件夹 -> 右键 -> build path -> configure build path

      

      技巧01:也可以在 build path中进行添加【ps: 待添加的jar包可以在任何位置,不用将他们放到项目文件夹下的lib中,我这样做的目的是为了避免jar包被不小心删除掉】

  2.3 代码实现

    借助 Jedis 去对 Redis 进行操作

    技巧01:其实和操作MySQL的套路一样

    2.3.1 单实例模式

      就是不使用连接池的模式,每次要对 Redis 进行操作时先自己创建连接,在进行相关操作,操作完后自己在关闭连接;这样很消耗内存

    @Test
public void test01() {
System.out.println("Hello Boy");
// 01 获取Jedis客户端【设置IP和端口】
Jedis jedis = new Jedis("192.168.233.134", 6379); // 02 保存数据
jedis.set("name", "王杨帅"); // 03 获取数据
String value = jedis.get("name");
System.out.println("获取到的数据为:" + value); String age = jedis.get("age");
System.out.println("获取到的年龄信息为:" + age); // 04 释放资源
jedis.close(); }

    2.3.2 连接池模式

      就是在项目启动时先创建一些连接,谁需要操作 Redis 时就直接拿一个空闲的连接过去就可以啦,用完再还回去即可;这样就避免了连接的重复创建和销毁,从而减少了内存的消耗。

    /**
* 使用连接池的方式
*/
@Test
public void demo02() {
System.out.println("Hello Warrior"); // 01 获取连接池对象
JedisPoolConfig config = new JedisPoolConfig();
// 0101 最大连接数
config.setMaxTotal(30);
// 0102 最大空闲连接数
config.setMaxIdle(10); // 02 获取连接池
JedisPool jedisPool = new JedisPool(config, "192.168.233.133", 6379); // 03 核心对象【获取Jedis客户端对象】
Jedis jedis = null;
try {
// 0301 通过连接池获取Jedis客户端
jedis = jedisPool.getResource();
// 0302 设置数据
jedis.set("name", "三少");
// 0303 获取数据
String value = jedis.get("name");
System.out.println(value);
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
} finally {
if (jedis != null) {
jedis.close();
}
if (jedisPool != null) {
jedisPool.close();
}
}
}
package cn.xinagxu.jedis;

import org.junit.Test;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig; /**
* Jedis测试
* @author a
*
*/
public class JedisDemo01 { /**
* 单实例的测试
*/
@Test
public void test01() {
System.out.println("Hello Boy");
// 01 获取Jedis客户端【设置IP和端口】
Jedis jedis = new Jedis("192.168.233.134", 6379); // 02 保存数据
jedis.set("name", "王杨帅"); // 03 获取数据
String value = jedis.get("name");
System.out.println("获取到的数据为:" + value); String age = jedis.get("age");
System.out.println("获取到的年龄信息为:" + age); // 04 释放资源
jedis.close(); } /**
* 使用连接池的方式
*/
@Test
public void demo02() {
System.out.println("Hello Warrior"); // 01 获取连接池对象
JedisPoolConfig config = new JedisPoolConfig();
// 0101 最大连接数
config.setMaxTotal(30);
// 0102 最大空闲连接数
config.setMaxIdle(10); // 02 获取连接池
JedisPool jedisPool = new JedisPool(config, "192.168.233.133", 6379); // 03 核心对象【获取Jedis客户端对象】
Jedis jedis = null;
try {
// 0301 通过连接池获取Jedis客户端
jedis = jedisPool.getResource();
// 0302 设置数据
jedis.set("name", "三少");
// 0303 获取数据
String value = jedis.get("name");
System.out.println(value);
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
} finally {
if (jedis != null) {
jedis.close();
}
if (jedisPool != null) {
jedisPool.close();
}
}
} }

代码汇总

3 传统使用(IDEA)

  准备:新建一个普通的Java项目

  3.1 添加jar文件

    在项目的根目录下创建一个lib目录,将下载好的两个jar包复制到lib文件夹里面

    

  3.2 将jar文件添加到项目的构建目录中

    选中相应的jar包 -> 右键 -> add as library

  3.3 查看添加的jar包

    file -> project structure -> modules -> dependencies

    技巧01:peoject structure中也可以进行jar包的添加

    

  3.4 代码实现

package hello;

import org.junit.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig; /**
* @author 王杨帅
* @create 2018-06-23 21:39
* @desc
**/
public class RedisTest {
@Test
public void test01() {
// 01 获取Jedis客户端【设置IP和端口】
Jedis jedis = new Jedis("192.168.233.134", 6379); // 02 保存数据
jedis.set("name", "王杨帅"); // 03 获取数据
String value = jedis.get("name");
System.out.println("获取到的数据为:" + value); String age = jedis.get("age");
System.out.println("获取到的年龄信息为:" + age); // 04 释放资源
jedis.close();
} /**
* 使用连接池的方式
*/
@Test
public void demo02() {
System.out.println("Hello Warrior"); // 01 获取连接池对象
JedisPoolConfig config = new JedisPoolConfig();
// 0101 最大连接数
config.setMaxTotal(30);
// 0102 最大空闲连接数
config.setMaxIdle(10); // 02 获取连接池
JedisPool jedisPool = new JedisPool(config, "192.168.233.133", 6379); // 03 核心对象【获取Jedis客户端对象】
Jedis jedis = null;
try {
// 0301 通过连接池获取Jedis客户端
jedis = jedisPool.getResource();
// 0302 设置数据
jedis.set("name", "三少");
// 0303 获取数据
String value = jedis.get("name");
System.out.println(value);
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
} finally {
if (jedis != null) {
jedis.close();
}
if (jedisPool != null) {
jedisPool.close();
}
}
}
}

4 利用 jedis 客户端时出现的Bug

  4.1 Redis 服务端拒接连接

    原因:Redis 服务端默认只用本机才可以连接

    解决:修改 redis.conf 配置文件 -> 将 bind 127.0.0.1 注释掉即可

  4.2 Redis 服务端开启了保护模式,拒绝外网访问

    原因:Redis是在守护状态下运行

    解决:修改 redis.conf 配置文件 -> 将 protected-mode 后面的 yes 改为 no 即可

  4.3 修改后的 redis.conf  配置文件 

# Redis configuration file example.
#
# Note that in order to read the configuration file, Redis must be
# started with the file path as first argument:
#
# ./redis-server /path/to/redis.conf # Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include /path/to/local.conf
# include /path/to/other.conf ################################## NETWORK ##################################### # By default, if no "bind" configuration directive is specified, Redis listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Redis to listen only into
# the IPv4 lookback interface address (this means Redis will be able to
# accept connections only from clients running into the same computer it
# is running).
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#bind 127.0.0.1 # Protected mode is a layer of security protection, in order to avoid that
# Redis instances left open on the internet are accessed and exploited.
#
# When protected mode is on and if:
#
# 1) The server is not binding explicitly to a set of addresses using the
# "bind" directive.
# 2) No password is configured.
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
protected-mode no # Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
port 6379 # TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
tcp-backlog 511 # Unix socket.
#
# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable)
timeout 0 # TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
# equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 300 seconds, which is the new
# Redis default starting with Redis 3.2.1.
tcp-keepalive 300 ################################# GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize yes # If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
# supervised no - no supervision interaction
# supervised upstart - signal upstart by putting Redis into SIGSTOP mode
# supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
# supervised auto - detect upstart or systemd method based on
# UPSTART_JOB or NOTIFY_SOCKET environment variables
# Note: these supervision methods only signal "process is ready."
# They do not enable continuous liveness pings back to your supervisor.
supervised no # If a pid file is specified, Redis writes it where specified at startup
# and removes it at exit.
#
# When the server runs non daemonized, no pid file is created if none is
# specified in the configuration. When the server is daemonized, the pid file
# is used even if not specified, defaulting to "/var/run/redis.pid".
#
# Creating a pid file is best effort: if Redis is not able to create it
# nothing bad happens, the server will start and run normally.
pidfile /var/run/redis_6379.pid # Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice # Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile "" # To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no # Specify the syslog identity.
# syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16 ################################ SNAPSHOTTING ################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving completely by commenting out all "save" lines.
#
# It is also possible to remove all the previously configured save
# points by adding a save directive with a single empty string argument
# like in the following example:
#
# save "" save 900 1
save 300 10
save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes # The filename where to dump the DB
dbfilename dump.rdb # The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir ./ ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
#
# 1) Redis replication is asynchronous, but you can configure a master to
# stop accepting writes if it appears to be not connected with at least
# a given number of slaves.
# 2) Redis slaves are able to perform a partial resynchronization with the
# master if the replication link is lost for a relatively small amount of
# time. You may want to configure the replication backlog size (see the next
# sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
# network partition slaves automatically try to reconnect to masters
# and resynchronize with them.
#
# slaveof <masterip> <masterport> # If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth <master-password> # When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
# still reply to client requests, possibly with out of date data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO and SLAVEOF.
#
slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only slaves using 'rename-command' to shadow all the
# administrative / dangerous commands.
slave-read-only yes # Replication SYNC strategy: disk or socket.
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New slaves and reconnecting slaves that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the slaves.
# The transmission can happen in two different ways:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
# file on disk. Later the file is transferred by the parent
# process to the slaves incrementally.
# 2) Diskless: The Redis master creates a new process that directly writes the
# RDB file to slave sockets, without touching the disk at all.
#
# With disk-backed replication, while the RDB file is generated, more slaves
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new slaves arriving will be queued and a new transfer
# will start when the current one terminates.
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple slaves
# will arrive and the transfer can be parallelized.
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the slaves.
#
# This is important since once the transfer starts, it is not possible to serve
# new slaves arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more slaves arrive.
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10 # The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
# 2) Master timeout from the point of view of slaves (data, pings).
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates
# slave data when slaves are disconnected for some time, so that when a slave
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the slave missed while
# disconnected.
#
# The bigger the replication backlog, the longer the time the slave can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a slave connected.
#
# repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last slave disconnected, for
# the backlog buffer to be freed.
#
# A value of 0 means to never release the backlog.
#
# repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
slave-priority 100 # It is possible for a master to stop accepting writes if there are less than
# N slaves connected, having a lag less or equal than M seconds.
#
# The N slaves need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the slave, that is usually sent every second.
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough slaves
# are available, to the specified number of seconds.
#
# For example to require at least 3 slaves with a lag <= 10 seconds use:
#
# min-slaves-to-write 3
# min-slaves-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-slaves-to-write is set to 0 (feature disabled) and
# min-slaves-max-lag is set to 10. # A Redis master is able to list the address and port of the attached
# slaves in different ways. For example the "INFO replication" section
# offers this information, which is used, among other tools, by
# Redis Sentinel in order to discover slave instances.
# Another place where this info is available is in the output of the
# "ROLE" command of a masteer.
#
# The listed IP and address normally reported by a slave is obtained
# in the following way:
#
# IP: The address is auto detected by checking the peer address
# of the socket used by the slave to connect with the master.
#
# Port: The port is communicated by the slave during the replication
# handshake, and is normally the port that the slave is using to
# list for connections.
#
# However when port forwarding or Network Address Translation (NAT) is
# used, the slave may be actually reachable via different IP and port
# pairs. The following two options can be used by a slave in order to
# report to its master a specific set of IP and port, so that both INFO
# and ROLE will report those values.
#
# There is no need to use both the options if you need to override just
# the port or the IP address.
#
# slave-announce-ip 5.5.5.5
# slave-announce-port 1234 ################################## SECURITY ################################### # Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared # Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 10000 # Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# maxmemory <bytes> # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs a bit more CPU. 3 is very fast but not very accurate.
#
# maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec". # appendfsync always
appendfsync everysec
# appendfsync no # When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature. auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds.
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
#
# When a long running script exceeds the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write command was
# already issued by the script but the user doesn't want to wait for the natural
# termination of the script.
#
# Set it to 0 or a negative value for unlimited execution without warnings.
lua-time-limit 5000 ################################ REDIS CLUSTER ###############################
#
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
# in order to mark it as "mature" we need to wait for a non trivial percentage
# of users to deploy it in production.
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
# Normal Redis instances can't be part of a Redis Cluster; only nodes that are
# started as cluster nodes can. In order to start a Redis instance as a
# cluster node enable the cluster support uncommenting the following:
#
# cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not
# intended to be edited by hand. It is created and updated by Redis nodes.
# Every Redis Cluster node requires a different cluster configuration file.
# Make sure that instances running in the same system do not have
# overlapping cluster configuration file names.
#
# cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable
# for it to be considered in failure state.
# Most other internal time limits are multiple of the node timeout.
#
# cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data
# looks too old.
#
# There is no simple way for a slave to actually have a exact measure of
# its "data age", so the following two checks are performed:
#
# 1) If there are multiple slaves able to failover, they exchange messages
# in order to try to give an advantage to the slave with the best
# replication offset (more data from the master processed).
# Slaves will try to get their rank by offset, and apply to the start
# of the failover a delay proportional to their rank.
#
# 2) Every single slave computes the time of the last interaction with
# its master. This can be the last ping or command received (if the master
# is still in the "connected" state), or the time that elapsed since the
# disconnection with the master (if the replication link is currently down).
# If the last interaction is too old, the slave will not try to failover
# at all.
#
# The point "2" can be tuned by user. Specifically a slave will not perform
# the failover if, since the last interaction with the master, the time
# elapsed is greater than:
#
# (node-timeout * slave-validity-factor) + repl-ping-slave-period
#
# So for example if node-timeout is 30 seconds, and the slave-validity-factor
# is 10, and assuming a default repl-ping-slave-period of 10 seconds, the
# slave will not try to failover if it was not able to talk with the master
# for longer than 310 seconds.
#
# A large slave-validity-factor may allow slaves with too old data to failover
# a master, while a too small value may prevent the cluster from being able to
# elect a slave at all.
#
# For maximum availability, it is possible to set the slave-validity-factor
# to a value of 0, which means, that slaves will always try to failover the
# master regardless of the last time they interacted with the master.
# (However they'll always try to apply a delay proportional to their
# offset rank).
#
# Zero is the only value able to guarantee that when all the partitions heal
# the cluster will always be able to continue.
#
# cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters
# that are left without working slaves. This improves the cluster ability
# to resist to failures as otherwise an orphaned master can't be failed over
# in case of failure if it has no working slaves.
#
# Slaves migrate to orphaned masters only if there are still at least a
# given number of other working slaves for their old master. This number
# is the "migration barrier". A migration barrier of 1 means that a slave
# will migrate only if there is at least 1 other working slave for its master
# and so forth. It usually reflects the number of slaves you want for every
# master in your cluster.
#
# Default is 1 (slaves migrate only if their masters remain with at least
# one slave). To disable migration just set it to a very large value.
# A value of 0 can be set but is useful only for debugging and dangerous
# in production.
#
# cluster-migration-barrier 1 # By default Redis Cluster nodes stop accepting queries if they detect there
# is at least an hash slot uncovered (no available node is serving it).
# This way if the cluster is partially down (for example a range of hash slots
# are no longer covered) all the cluster becomes, eventually, unavailable.
# It automatically returns available as soon as all the slots are covered again.
#
# However sometimes you want the subset of the cluster which is working,
# to continue to accept queries for the part of the key space that is still
# covered. In order to do so, just set the cluster-require-full-coverage
# option to no.
#
# cluster-require-full-coverage yes # In order to setup your cluster make sure to read the documentation
# available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Redis instance.
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enabled at runtime using the command
# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
latency-monitor-threshold 0 ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/notifications
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
#
# PUBLISH __keyspace@0__:foo del
# PUBLISH __keyevent@0__:del foo
#
# It is possible to select the events that Redis will notify among a set
# of classes. Every class is identified by a single character:
#
# K Keyspace events, published with __keyspace@<db>__ prefix.
# E Keyevent events, published with __keyevent@<db>__ prefix.
# g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
# $ String commands
# l List commands
# s Set commands
# h Hash commands
# z Sorted set commands
# x Expired events (events generated every time a key expires)
# e Evicted events (events generated when a key is evicted for maxmemory)
# A Alias for g$lshzxe, so that the "AKE" string means all the events.
#
# The "notify-keyspace-events" takes as argument a string that is composed
# of zero or multiple characters. The empty string means that notifications
# are disabled.
#
# Example: to enable list and generic events, from the point of view of the
# event name, use:
#
# notify-keyspace-events Elg
#
# Example 2: to get the stream of the expired keys subscribing to channel
# name __keyevent@0__:expired use:
#
# notify-keyspace-events Ex
#
# By default all notifications are disabled because most users don't need
# this feature and the feature has some overhead. Note that if you don't
# specify at least one of K or E, no events will be delivered.
notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64 # Lists are also encoded in a special way to save a lot of space.
# The number of entries allowed per internal list node can be specified
# as a fixed maximum size or a maximum number of elements.
# For a fixed maximum size, use -5 through -1, meaning:
# -5: max size: 64 Kb <-- not recommended for normal workloads
# -4: max size: 32 Kb <-- not recommended
# -3: max size: 16 Kb <-- probably not recommended
# -2: max size: 8 Kb <-- good
# -1: max size: 4 Kb <-- good
# Positive numbers mean store up to _exactly_ that number of elements
# per list node.
# The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
# but if your use case is unique, adjust the settings as necessary.
list-max-ziplist-size -2 # Lists may also be compressed.
# Compress depth is the number of quicklist ziplist nodes from *each* side of
# the list to *exclude* from compression. The head and tail of the list
# are always uncompressed for fast push/pop operations. Settings are:
# 0: disable all list compression
# 1: depth 1 means "don't start compressing until after 1 node into the list,
# going from either the head or tail"
# So: [head]->node->node->...->node->[tail]
# [head], [tail] will always be uncompressed; inner nodes will compress.
# 2: [head]->[next]->node->node->...->node->[prev]->[tail]
# 2 here means: don't compress head or head->next or tail->prev or tail,
# but compress all nodes between them.
# 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
# etc.
list-compress-depth 0 # Sets have a special encoding in just one case: when a set is composed
# of just strings that happen to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into a hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# actively rehash the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply from time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
activerehashing yes # The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
#
# The limit can be set differently for the three different classes of clients:
#
# normal -> normal clients including MONITOR clients
# slave -> slave clients
# pubsub -> clients subscribed to at least one pubsub channel or pattern
#
# The syntax of every client-output-buffer-limit directive is the following:
#
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
#
# Instead there is a default limit for pubsub and slave clients, since
# subscribers and slaves receive data in a push fashion.
#
# Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform according to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
hz 10 # When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
aof-rewrite-incremental-fsync yes

  4.4参考博文

  

5 Maven使用(推荐)

  准备:创建一个maven项目,三少直接创建一个 SpringBoot 项目来代替

  5.1 引入相关依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>cn.xiangxu</groupId>
<artifactId>redis_demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging> <name>redis_demo</name>
<description>Demo project for Spring Boot</description> <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.3.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent> <properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<java.version>1.8</java.version>
</properties> <dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<!--<scope>runtime</scope>-->
<optional>true</optional>
</dependency> <!--开发小工具 start-->
<!-- https://mvnrepository.com/artifact/org.projectlombok/lombok -->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.0</version>
</dependency>
<!--开发小工具 end--> <!--redis相关 start-->
<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.0</version>
</dependency>
<!--redis相关 end--> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
</dependency>
</dependencies> <build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<fork>true</fork>
</configuration>
</plugin>
</plugins>
</build> </project>

  5.2 代码实现

package cn.xiangxu.redis_demo.web;

import lombok.extern.slf4j.Slf4j;
import org.junit.jupiter.api.Test;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig; /**
* @author 王杨帅
* @create 2018-06-25 11:15
* @desc 测试控制层
**/
@RestController
@RequestMapping(value = "/test")
@Slf4j
public class TestConroller { @Test
public void test01() {
// 01 获取Jedis客户端【设置IP和端口】
Jedis jedis = new Jedis("192.168.233.134", 6379); // 02 保存数据
jedis.set("name", "王杨帅"); // 03 获取数据
String value = jedis.get("name");
System.out.println("获取到的数据为:" + value); String age = jedis.get("age");
System.out.println("获取到的年龄信息为:" + age); // 04 释放资源
jedis.close();
} @Test
public void test02() {
System.out.println("Hello Warrior"); // 01 获取连接池对象
JedisPoolConfig config = new JedisPoolConfig();
// 0101 最大连接数
config.setMaxTotal(30);
// 0102 最大空闲连接数
config.setMaxIdle(10); // 02 获取连接池
JedisPool jedisPool = new JedisPool(config, "192.168.233.134", 6379); // 03 核心对象【获取Jedis客户端对象】
Jedis jedis = null;
try {
// 0301 通过连接池获取Jedis客户端
jedis = jedisPool.getResource();
// 0302 设置数据
jedis.set("name", "三少");
// 0303 获取数据
String value = jedis.get("name");
System.out.println(value);
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
} finally {
if (jedis != null) {
jedis.close();
}
if (jedisPool != null) {
jedisPool.close();
}
}
} @GetMapping(value = "/connect")
public String connect() { Jedis jedis = new Jedis("192.168.233.134", 6379); String redis_name = jedis.get("name");
String redis_name_result = "从虚拟机中的redis中获取到的数据为:" + redis_name; log.info(redis_name); String result = "前后台连接成功_王杨帅";
log.info(result);
return redis_name_result;
} }

  5.3 单线程下使用  

    可以之间创建连接,详情参见5.2,这种做法不推荐使用;正常正式开发中,会把Jedis包装在一个单例模式中,避免每次都去重新连接

server:
port: 9999
servlet:
path: /dev
spring:
redis:
port: 6379
host: 192.168.233.134

配置文件

package cn.xiangxu.redis_demo.common.uitls;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
import redis.clients.jedis.Jedis; /**
* @author 王杨帅
* @create 2018-06-25 13:35
* @desc jedis客户端工具类
**/
@Component
public class JedisClientUtil { @Value("${spring.redis.host}")
private String host; @Value("${spring.redis.port}")
private Integer port; private final byte[] temp_lock = new byte[1]; private Jedis jedis; public JedisClientUtil(){} public Jedis getRedisClient() {
if (jedis == null) {
synchronized (temp_lock) {
if (jedis == null) {
System.out.println(host);
System.out.println(port);
jedis = new Jedis(host,port);
}
}
}
return jedis;
} }

JedisClientUtil.java

    /**
* 单线程模式
*/
@Autowired
private JedisClientUtil jedisClientUtil;
@GetMapping(value = "/connect")
public String connect() {
// JedisClientUtil jedisClientUtil = new JedisClientUtil();
Jedis jedis = jedisClientUtil.getRedisClient();
try {
jedis.set("foot", "bar");
String value = jedis.get("foot");
System.out.println(value);
return "从redis获取到的数据信息为:" + value;
} finally {
//注意关闭
jedis.close();
}
}

测试

  5.4 多线程下使用

    利用 Jedis 提供了 JedisPool 的类来创建连接池,详情参见5.2,这种做法不退进啊;多线程环境下,线程池的正确使用方法,单例的连接池,单例的配置如下:

server:
port: 9999
servlet:
path: /dev
spring:
redis:
port: 6379
host: 192.168.233.134

配置文件

package cn.xiangxu.redis_demo.common.uitls;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig; /**
* @author 王杨帅
* @create 2018-06-25 16:45
* @desc 连接池管理redis连接
**/
@Component
public class JedisClientPoolUtil { @Value("${spring.redis.host}")
private String host; @Value("${spring.redis.port}")
private Integer port; private final static byte[] temp_lock = new byte[1]; /**
* jedis连接池对象
*/
private JedisPool jedisPool; /**
* 连接池配置
* @return redis连接池配置对象
*/
private JedisPoolConfig jedisPoolConfig(){
JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
jedisPoolConfig.setMaxTotal(20);
jedisPoolConfig.setMaxIdle(10);
jedisPoolConfig.setMaxWaitMillis(1000);
return jedisPoolConfig;
} /**
* 获取连接池对象
* @return 连接池对象
*/
private JedisPool getJedisPool() {
if (jedisPool == null) {
synchronized (temp_lock) {
if (jedisPool == null) {
jedisPool = new JedisPool(jedisPoolConfig(),host,port);
}
}
}
return jedisPool;
} /**
* 获取连接对象
* @return 连接对象
*/
public Jedis getJedis(){
return getJedisPool().getResource();
} }

JedisClientPoolUtil.java

    /**
* 多线程模式
*/
@Autowired
private JedisClientPoolUtil jedisClientPoolUtil;
@GetMapping(value = "/connect02")
public String connect02() {
Jedis jedis = jedisClientPoolUtil.getJedis();
String redis_name = jedis.get("name");
String redis_name_result = "从虚拟机即redis中获取到的数据信息为:" + redis_name;
log.info(redis_name_result);
return redis_name_result;
}

测试代码

    

    

Redis02 Redis客户端之Java、连接远程Redis服务器失败的更多相关文章

  1. Java连接远程Redis

    redis-server &  //后台启动redis redis-cli //使用redis   打开redis.conf文件在NETWORK部分有说明   /usr/local/src   ...

  2. Java 连接远程Linux 服务器执行 shell 脚本查看 CPU、内存、硬盘信息

    pom.xml jar 包支持 <dependency> <groupId>com.jcraft</groupId> <artifactId>jsch& ...

  3. java 连接远程Linux 服务器

    创建闭锁,确保能连接到zk服务器. // 创建闭锁final CountDownLatch countDownLatch = new CountDownLatch(1); String connect ...

  4. windows连接远程win服务器失败,win7win10都存在此问题,显示出现身份验证错误,要求的函数不受支持,可能由于CredSSP加密Oracle修正 (原)

    之前电脑windows+mstsc连接另一个windows服务器正常登陆,可在更新本地系统为win10以后,登陆就出现了问题,提示的错误是,出现身份验证错误.要求的函数不受支持,可能由于CredSSP ...

  5. redis清除缓存和连接远程服务器

    直接进入命令行输入 1.连接远程redis:   redis-cli -h 127.0.0.1 -p 3008 -a pIctur3   (a后是密码) 2.查看缓存:keys * 3.清除缓存:de ...

  6. Java 连接使用 Redis

    1. 开始在 Java 中使用 Redis 前, 我们需要确保已经安装了 redis 服务及 Java redis 驱动,且你的机器上能正常使用 Java. 首先你需要下载驱动包,下载 jedis.j ...

  7. 如何配置pl/sql 连接远程oracle服务器

    在下边的两种情况下,如何配置pl/sql 连接远程oracle服务器 1)在客户端不装oracle 客户端也不装服务器,能否配置pl/sql 连接远程oracle服务器,如何配置,请给出详细的文档说明 ...

  8. java连接Fastdfs图片服务器上传失败的解决方法

    照着视频上做,但是却连接不了虚拟机linux上的图片服务器,估计是linux防火墙的问题(这个实在是神烦,前面有好几次连接不了都是因为linux防火墙),果不其然,关闭即可. Linux关闭防火墙的命 ...

  9. 在linux安装redis单机和集群后,如何在windows上使用redis客户端或者java代码访问错误的原因很简单,就是没有连接上redis服务,由于redis采用的安全策略,默认会只准许本地访问。需要通过简单配置,完成允许外网访问。

    这几天在学习在linux上搭建服务器的工作,可谓历经艰辛.可喜最后收获也不少. 这次是在linux上搭建redis服务器后从windows上缺无法访问,连接不上. 仔细回忆以前搭建nginx和ftp的 ...

随机推荐

  1. (十)js获取日期

    //将日期转换成字符串格式输出 function formatDateToString(){ // 先获取对象日期 var oDate = new Date(); // 从该对象中分别拿出所需要的 年 ...

  2. NOIP模拟题 膜法

    题目大意 给定若干组询问求$\sum\limits_{i=l}^r \dbinom{i}{k}$. 最终输出每组询问答案的乘积. 题解 首先把$l,r$分开处理相减,只需要求$\sum\limits_ ...

  3. 洛谷 P1312 Mayan游戏

    题解:搜索+模拟 剪枝: 最优性剪枝:x从小到大,y从小到大,第一次搜到的就是字典序最小 的最优解. 最优性剪枝:把一个格子和左边格子交换,和左边格子和右边格 子交换是等价的,显然让左边格子和右边交换 ...

  4. bzoj 2784 时间流逝 —— 树上高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2784 其实转移是一棵树,从根到一个点表示一种能量圈状态,当能量值大于 T 是停止,也就是成为 ...

  5. Toolbar使用

    原文地址 http://www.cnblogs.com/Dentist/p/4370176.html Android4.0出现的Actionbar提供了同意方便的导航管理.很大程度的统一了Androi ...

  6. (转)Android强制设置横屏或竖屏

    全屏 在Activity的onCreate方法中的setContentView(myview)调用之前添加下面代码 requestWindowFeature(Window.FEATURE_NO_TIT ...

  7. 如何配置数据库ODBC数据源

    在<调整计算机的设置>中,点击<系统和安全>.   点击<管理工具>.   点击<数据源(ODBC)>.   点击<系统用户>,然后,点击按 ...

  8. Maven入门----MyEclipse创建maven项目(二)

    新建项目: Next next next 新建项目后,MyEclipse会自动从远程仓库中下载支持包,需要几分钟左右时间. 项目结构图: HelloWorld.java public class He ...

  9. 经典ARP协议讲解,一定要看

    以太网协议是目前最流行的通信协议之一.从底层到高层协议家族非常庞大.今天为您介绍一下经常用到却比一定知道的协议. 在链路层上,主机和路由器用他们的物理地址来标志,即48位的物理地址,也是是我们通常所说 ...

  10. POJ2478(欧拉函数)

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15242   Accepted: 6054 D ...