个人心得:今天就做了这些区间DP,这一题开始想用最长子序列那些套路的,后面发现不满足无后效性的问题,即(,)的配对

对结果有一定的影响,后面想着就用上一题的思想就慢慢的从小一步一步递增,后面想着越来越大时很多重复,应该要进行分割,

后面想想又不对,就去看题解了,没想到就是分割,还是动手能力太差,还有思维不够。

 for(int j=;j+i<ch.size();j++)
{
if(check(j,j+i))
dp[j][j+i]=dp[j+][j+i-]+;
for(int m=j;m<=j+i;m++)
dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+][j+i]);
}

分割并一次求最大值。动态规划真的是一脸懵逼样,多思考,多瞎想吧,呼~

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iomanip>
#include<string>
#include<algorithm>
using namespace std;
int money[];
int dp[][];
string ch;
const int inf=;
int check(int i,int j){
if((ch[i]=='('&&ch[j]==')')||(ch[i]=='['&&ch[j]==']'))
return ;
return ;
}
void init(){
for(int i=;i<ch.size();i++)
for(int j=;j<ch.size();j++)
dp[i][j]=;
}
int main(){
int n,m;
while(getline(cin,ch,'\n')){
if(ch=="end") break;
init();
for(int k=;k<ch.size()-;k++)
if(check(k,k+))
dp[k][k+]=;
else
dp[k][k+]=;
for(int i=;i<ch.size();i++)
{
for(int j=;j+i<ch.size();j++)
{
if(check(j,j+i))
dp[j][j+i]=dp[j+][j+i-]+;
for(int m=j;m<=j+i;m++)
dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+][j+i]);
} }
cout<<dp[][ch.size()-]<<endl;
}
return ;
}
												

Brackets (区间DP)的更多相关文章

  1. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  2. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  3. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  4. Brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3624   Accepted: 1879 Descript ...

  5. POJ2955:Brackets(区间DP)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  6. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  7. Code Forces 149DColoring Brackets(区间DP)

     Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. POJ2955 Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  9. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  10. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. SQL语句 自连表查询。inner join用法,partition by ,列转行查询

    use mydb1 go -- 表T_Employee2 -- Id Name Position Dept -- 1 张三 员工 市场部 -- 2 李四 经理 销售部 -- 3 王五 经理 市场部 - ...

  2. Python编程-异常处理

    一.错误和异常 1.程序中难免出现错误,而错误分成两种 (1)语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正) #语法错误示范一 if #语法错误示范二 def t ...

  3. LVS 介绍

    LVS 介绍 说明: LVS是Linux Virtual Server的简称 LVS是一个实现负载均衡的开源软件项目 LVS效率要高于Nginx LVS工作在ISO的第4层(传输层) LVS架构有三层 ...

  4. Java Comparator方法 和 Comparable接口

    默认的排序方法: 让类继承Comparable接口,重写compareTo方法. 示例代码: package com.imooc.collection; import java.util.HashSe ...

  5. 在一个N个整数数组里面,有多个奇数和偶数,设计一个排序算法,令所有的奇数都在左边。

    //在一个N个整数数组里面,有多个奇数和偶数,设计一个排序算法,令所有的奇数都在左边. // 例如: 当输入a = {8,4,1,6,7,4,9,6,4}, // a = {1,7,9,8,4,6,4 ...

  6. CentOS 安装 Zabbix

    一.安装 centos7 网易下载 http://mirrors.163.com/centos/7.2.1511/isos/x86_64/CentOS-7-x86_64-DVD-1511.torren ...

  7. Elasticsearch安装笔记

    下载安装包 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.5.2.zip 开始执行bin/./el ...

  8. 斯特林公式求N!

        n!的长度为 ll ans = log10(2*pi*n)/2 + n*(log10(n/exp(1.0)))+1;  

  9. Spring中AOP的初窥和入门小案例

    AOP:面向切面编程 AOP的主要作用:是为了程序员更好的关注"业务",专心"做事" 加上双引号的意思:所谓业务,是指他的核心,各行业中需要处理的核心事务,核心 ...

  10. PyCharm 的初始设置1

    PyCharm 的初始设置 PyCharm 的官方网站地址是:https://www.jetbrains.com/pycharm/ 01. 恢复 PyCharm 的初始设置 PyCharm 的 配置信 ...