《Docker 入门与实践》 已经出版了~欢迎有须要的朋友关注。
Docker的出现正好能帮助软件开发人员开阔思路。尝试新的软件管理方法来解决问题。
通过掌握Docker。开发人员便可享受先进的自己主动化运维理念和工具,无需运维人员介入就可以顺利执行于各种执行环境。
《Docker技术入门与实战》分为三大部分:Docker入门、实战案例和高级话题。第一部分(第1~8章)介绍Docker与虚拟化技术的基本概念。包含安装、镜像、容器、仓库、数据管理等。第二部分(第9~17章)通过案例介绍Docker的应用方法,包含与各种操作系统平台、SSH服务的镜像、Webserver与应用、数据库的应用、各类编程语言的接口、私有仓库等;第三部分(第18~21章)是一些高级话题。如Docker核心技术、安全、高级网络配置、相关项目等。
《Docker技术入门与实战》从基本原理開始入手,深入浅出地解说Docker的构建与操作。内容系统全面,可帮助开发人员、运维人员高速部署应用。
购买地址:京东--
当当--
《Docker 入门与实践》 已经出版了~欢迎有须要的朋友关注。的更多相关文章
- Docker入门到实践
1.什么是Docke 1.网上有很多 2.为什么要使用Docker? 优点 更高效的利用系统资源 更快速的启动时间 一致的运行环境 持续交付和部署 更轻松的迁移 更轻松的维护和扩展 3.Docker的 ...
- Docker 入门到实践(四)Docker 使用镜像
一.获取镜像 Docker Hub 上有大量的高质量的镜像让我们获取,命令为: docker pull [选项] [Docker Registry 地址[:端口号]/]仓库名[:标签] 具体的选项可以 ...
- Docker 入门到实践(三)Docker 安装
注意:不要在没有配置 Docker APT 源的情况下直接使用 apt 命令安装 Docker. 一.准备工作 系统要求 Docker CE 支持一下版本的 Ubuntu 操作系统 Cosmic 18 ...
- Docker入门与实践
一.Docker介绍 docker官网:https://www.docker.com/ Docker hub地址: https://hub.docker.com/ 1.基本概念 Docker ...
- Docker入门与实践之 Dockerfile 语法详解
一.Dockerfile 概述 Dockerfile是docker程序的解释脚本文件,Dockerfile 是一条一条的指令,Docker程序将dockerfile中的一条条指令编译成Linux可执行 ...
- Docker入门与实践之 docker安装与了解
一.Docker 概述 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源.Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后 ...
- Docker入门到实践——简单操作
1.对比传统虚拟机总结 特性 容器 虚拟机 启动 秒级 分钟级 硬盘使用 一般为MB 一般为GB 性能 接近原生 弱于 系统支持量 单机支持上千个容器 一般几十个 2.基本概念 Docker包括三个基 ...
- Docker 入门实践
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:张戈 导语 本文从新手视角记录了一个实际的Dokcer应用场景从创建.上传直到部署的详细过程,并简单的介绍了腾讯云容器服务的使用方法 ...
- Docker 从入门到实践(一)Docker 简介
读前须知:本教程大部分都是[Docker 从入门到实践 ]一书的知识,有兴趣可以直接观看书籍.同时,借鉴书籍的知识,如有侵权,请告知我,我会删除处理.谢谢. 一.什么是 Docker? Docker ...
随机推荐
- Mysql 查看连接数,状态的相关命令
命令: show processlist; 如果是root帐号,你能看到所有用户的当前连接.如果是其它普通帐号,只能看到自己占用的连接. show processlist;只列出前100条,如果想全列 ...
- 曼哈顿距离、欧几里得距离、闵氏距离(p→∞为切比雪夫距离)
曼哈顿距离: 是由十九世纪的赫尔曼·闵可夫斯基所创词汇 ,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和. 曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离, ...
- Hibernate——5.2配置
Hibernate 5.2才刚刚出来不久,很多资料都并不可靠,终于完成了Hibernate的启动,的确和Hibernate4.x有些不同. 官方文档中的代码代码会报错 如下: 目前在我所知的范围内有两 ...
- Java的位运算符与二进制转换
转换: Java整型数据类型有:byte.char.short.int.long.要把它们转换成二进制的原码形式,必须明白他们各占几个字节.,一个字节==8位数 数据类型 ...
- DP(悬线法)+二维前缀和【p2706】巧克力
Background 王7的生日到了,他的弟弟准备送他巧克力. Description 有一个被分成n*m格的巧克力盒,在(i,j)的位置上有a[i,j]块巧克力.就在送出它的前一天晚上,有老鼠夜袭巧 ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals )D. Innokenty and a Football League(2-sat)
D. Innokenty and a Football League time limit per test 2 seconds memory limit per test 256 megabytes ...
- 礼物(BFS)
礼物 时间限制: 1 Sec 内存限制: 64 MB提交: 39 解决: 4[提交][状态][讨论版] 题目描述 给出一个n行m列的点阵,“.”表示可通行格子,“#”表示不可通行格子,“K”表示国 ...
- [BZOJ4316]小C的独立集(圆方树DP)
题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...
- 【网络流】【Dinic】【最大流】bzoj3396 [Usaco2009 Jan]Total flow 水流
#include<cstdio> #include<cstring> #include<algorithm> #include<queue> using ...
- [SHOI2014]信号增幅仪
题目大意: 平面直角坐标系中散落着n个点,一个椭圆的长半轴在对于x轴逆时针旋转α度的角度上,且长半轴是短半轴的k倍. 问短半轴至少要多长才能覆盖所有的点? 思路: 首先把坐标顺时针旋转α度,然后把所有 ...