题目

线段树合并的板子题目了,写一写对线段树合并的理解

首先线段树合并就是把一大堆权值线段树合并起来的算法

尽管复杂度看起来并不是非常科学,但是确是非常优秀的\(O(nlogn)\)

主要的写法两种

int merge(int a,int b,int x,int y) {
if(!a) return b;if(!b) return a;
if(x==y) {d[a]+=d[b];t[a]=x;return a;}
int mid=x+y>>1;
l[a]=merge(l[a],l[b],x,mid),r[a]=merge(r[a],r[b],mid+1,y);
pushup(a);return a;
}

把\(b\)合并到\(a\)上

但是我们这样直接把\(b\)合并过来的话,在以后继续合并\(a\)的时候可能合并过程中就会破坏\(b\)的结构,所以这种方法只适合于离线下来,合并完成之后立刻询问

我们也可以像主席树那样,合并不在原来的树上而是新开节点,这样就不需要离线了,一边询问一边用

int merge(int a,int b,int x,int y) {
if(!a) return b;if(!b) return a;
int root=++cnt;
if(x==y) {d[root]=d[a]+d[b];t[root]=x;return root;}
int mid=x+y>>1;
l[root]=merge(l[a],l[b],x,mid),r[root]=merge(r[a],r[b],mid+1,y);
pushup(root);return root;
}

缺点就是非常炸空间

这道题非常简单,我们直接对每一个节点维护一棵权值线段树,之后我们把一个询问变成一次树上差分的形式,之后直接向上合并线段树就好了

由于空间卡得紧这里采用了第一种方式离线询问

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define maxn 100005
#define M 6000005
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
struct E{int v,nxt;}e[maxn<<1];
int l[M],r[M],d[M],t[M];
int top[maxn],fa[maxn],head[maxn],deep[maxn],son[maxn],sum[maxn],X[maxn],Y[maxn],Z[maxn],Ans[maxn];
int n,m,rt[maxn],cnt,R,num;
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
void dfs1(int x) {
sum[x]=1;int maxx=-1;
for(re int i=head[x];i;i=e[i].nxt)
if(!deep[e[i].v])
{
deep[e[i].v]=deep[x]+1,fa[e[i].v]=x;
dfs1(e[i].v);
sum[x]+=sum[e[i].v];
if(sum[e[i].v]>maxx) maxx=sum[e[i].v],son[x]=e[i].v;
}
}
void dfs2(int x,int topf) {
top[x]=topf;
if(!son[x]) return;
dfs2(son[x],topf);
for(re int i=head[x];i;i=e[i].nxt) if(!top[e[i].v]) dfs2(e[i].v,e[i].v);
}
inline int LCA(int x,int y) {
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]]) std::swap(x,y);
x=fa[top[x]];
}
if(deep[x]<deep[y]) return x;return y;
}
inline void pushup(int a) {
if(d[l[a]]>=d[r[a]]) d[a]=d[l[a]],t[a]=t[l[a]];
else d[a]=d[r[a]],t[a]=t[r[a]];
}
int change(int a,int x,int y,int pos,int val) {
if(!a) a=++cnt;
if(x==y) {d[a]+=val,t[a]=x;return a;}
int mid=x+y>>1;
if(pos<=mid) l[a]=change(l[a],x,mid,pos,val);
else r[a]=change(r[a],mid+1,y,pos,val);
pushup(a);
return a;
}
int merge(int a,int b,int x,int y) {
if(!a) return b;if(!b) return a;
if(x==y) {d[a]+=d[b];t[a]=x;return a;}
int mid=x+y>>1;
l[a]=merge(l[a],l[b],x,mid),r[a]=merge(r[a],r[b],mid+1,y);
pushup(a);return a;
}
void Redfs(int x) {
for(re int i=head[x];i;i=e[i].nxt)
if(deep[e[i].v]>deep[x]) Redfs(e[i].v),rt[x]=merge(rt[x],rt[e[i].v],1,R);
if(d[rt[x]]) Ans[x]=t[rt[x]];
}
int main()
{
n=read(),m=read();int x,y,z;
for(re int i=1;i<n;i++) x=read(),y=read(),add(y,x),add(x,y);
deep[1]=1,dfs1(1),dfs2(1,1);
for(re int i=1;i<=m;i++) X[i]=read(),Y[i]=read(),Z[i]=read(),R=max(R,Z[i]);
for(re int i=1;i<=m;i++)
{
int lca=LCA(X[i],Y[i]);
rt[X[i]]=change(rt[X[i]],1,R,Z[i],1),rt[Y[i]]=change(rt[Y[i]],1,R,Z[i],1);
rt[lca]=change(rt[lca],1,R,Z[i],-1);
if(fa[lca]) rt[fa[lca]]=change(rt[fa[lca]],1,R,Z[i],-1);
}
Redfs(1);
for(re int i=1;i<=n;i++) printf("%d\n",Ans[i]);
return 0;
}

luogu4566 [Vani有约会]雨天的尾巴的更多相关文章

  1. [Vani有约会]雨天的尾巴 线段树合并

    [Vani有约会]雨天的尾巴 LG传送门 线段树合并入门好题. 先别急着上线段树合并,考虑一下这题的暴力.一看就是树上差分,对于每一个节点统计每种救济粮的数量,再一遍dfs把差分的结果统计成答案.如果 ...

  2. 洛谷 P4556 [Vani有约会]雨天的尾巴 解题报告

    P4556 [Vani有约会]雨天的尾巴 题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒 ...

  3. P4556 [Vani有约会]雨天的尾巴(线段树合并+lca)

    P4556 [Vani有约会]雨天的尾巴 每个操作拆成4个进行树上差分,动态开点线段树维护每个点的操作. 离线处理完向上合并就好了 luogu倍增lca被卡了5分.....于是用rmq维护.... 常 ...

  4. P4556 [Vani有约会]雨天的尾巴 (线段树合并)

    P4556 [Vani有约会]雨天的尾巴 题意: 首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋 ...

  5. 「Luogu4556」Vani有约会-雨天的尾巴

    「Luogu4556」Vani有约会-雨天的尾巴 传送门 很显然可以考虑树上差分+桶,每次更新一条链就是把这条链上的点在桶对应位置打上 \(1\) 的标记, 最后对每个点取桶中非零值的位置作为答案即可 ...

  6. [题解] P4556 [Vani有约会]雨天的尾巴

    [题解] P4556 [Vani有约会]雨天的尾巴 ·题目大意 给定一棵树,有m次修改操作,每次修改 \(( x\) \(y\) \(z )\) 表示 \((x,y)\) 之间的路径上数值 \(z\) ...

  7. 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)

    题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...

  8. [Vani有约会]雨天的尾巴

    嘟嘟嘟 看到链上操作,自然想到树剖. 先考虑序列上的问题:那么区间修改可以用差分.所以我们把操作拆成\(L\)和\(R + 1\)两个点,然后离线.排序后扫一遍,用线段树维护数量最多的颜色是哪一个. ...

  9. [Vani有约会]雨天的尾巴(树上差分+线段树合并)

    首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋z类型的救济粮. 然后深绘里想知道,当所有的救济粮 ...

随机推荐

  1. springboot+Druid+oracle 配置p6spy

    p6spy可以将带参数的sql直接打出来方便调试. 1.gradle中引入 compile group: 'p6spy', name: 'p6spy', version: '3.8.1' 2.reso ...

  2. do while循环

    do while循环: 语法格式: do{ 循环体 }while(循环条件); 执行流程: 先执行循环体,然后判断条件,当条件为true时,则继续执行循环体,然后再判断条件... 一直到循环条件为fa ...

  3. SpringMVC 源码阅读

  4. 这真的该用try-catch吗?

    前言 我有个技能,就是把“我”说的听起来特别像“老子”. 以前是小喽啰的时候,会跟领导说“我!不加班.”,听起来就像“老子不加班!”一样.到最后发现,我确实没有把计划内的工作拖到需要加班才能完成,这个 ...

  5. html 复选框checkbox

    统计选中复选框的个数 <html> <head> <title> </title> <script> function static_num ...

  6. gitbook一仓库多本书持续化部署

    引言 本文档用户指导新手如何部署GitLab+Jenkins自动化构建GitBook,并使用Nginx发布资料.在部署过程中,如遇到任何问题,请自行百度. 注意: 此文章的环境和数据,仅为用于调试的片 ...

  7. bootstrap-fileinput参数

    <link rel="stylesheet" href="css/bootstrapCSS/bootstrap.min.css"> <link ...

  8. 10、选择框:ion-select

    !重点 multiple="true" 控制 选择框是 多选还是单选.true为 多选类似 checkbox. /* ---html----*/ <ion-content p ...

  9. SpringSecurity 3.2入门(4)登录密码加密

    密码admin 进行MD5 32位加密为21232F297A57A5A743894A0E4A801FC3 增加spring-security.xml文件配置如下 <!-- 认证管理器,配置Spr ...

  10. 06.FileStream类的学习

    //FileStream类是用来操作字节的,也就是可以操作所有文件. 因为所有的文件都是以字节形式来存储的. //StreamReader类和StreamWriter类是用来操作字符的. FileSt ...