原创文章~转载请注明出处哦。其他部分内容参见以下链接~

GraphSAGE 代码解析(一) - unsupervised_train.py

GraphSAGE 代码解析(二) - layers.py

GraphSAGE 代码解析(三) - aggregators.py

1. 类及其继承关系

     Model
/ \
/ \
MLP GeneralizedModel
/ \
/ \
Node2VecModel SampleAndAggregate

首先看Model, GeneralizedModel, SampleAndAggregate这三个类的联系。

其中Model与 GeneralizedModel的区别在于,Model的build()函数中搭建了序列层模型,而在GeneralizedModel中被删去。self.ouput必须在GeneralizedModel的子类build()中被赋值。

class Model(object) 中的build()函数如下:

 def build(self):
""" Wrapper for _build() """
with tf.variable_scope(self.name):
self._build() # Build sequential layer model
self.activations.append(self.inputs)
for layer in self.layers:
hidden = layer(self.activations[-1])
self.activations.append(hidden)
self.outputs = self.activations[-1]
# 这部分sequential layer model模型在GeneralizedModel的build()中被删去 # Store model variables for easy access
variables = tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
self.vars = {var.name: var for var in variables} # Build metrics
self._loss()
self._accuracy() self.opt_op = self.optimizer.minimize(self.loss)

序列层实现的功能是,给输入,通过layer()返回输出,又将这个输出再次作为输入到下一个layer()中,最终,取最后一层layer的结果作为output.

2. class SampleAndAggregate(GeneralizedModel)

1. __init__():

(1) self.features的由来:

para: features    tf.get_variable()-> identity features
| |
self.features self.embeds --> At least one is not None
\ / --> Concat if both are not None
\ /
\ /
self.features

(2) self.dims:

self.dims是一个list, 每一位记录各个神经网络层的维数。

self.dims[0]的值相当于self.features的列数 (0 if features is None else features.shape[1]) + identity_dim),(注意:括号里features为传入的参数,而非self.features)

之后各位为各层output_dim,也就是hidden units的个数。

(3) __init()__函数代码

 def __init__(self, placeholders, features, adj, degrees,
layer_infos, concat=True, aggregator_type="mean",
model_size="small", identity_dim=0,
**kwargs):
'''
Args:
- placeholders: Stanford TensorFlow placeholder object.
- features: Numpy array with node features.
NOTE: Pass a None object to train in featureless mode (identity features for nodes)!
- adj: Numpy array with adjacency lists (padded with random re-samples)
- degrees: Numpy array with node degrees.
- layer_infos: List of SAGEInfo namedtuples that describe the parameters of all
the recursive layers. See SAGEInfo definition above.
- concat: whether to concatenate during recursive iterations
- aggregator_type: how to aggregate neighbor information
- model_size: one of "small" and "big"
- identity_dim: Set to positive int to use identity features (slow and cannot generalize, but better accuracy)
'''
super(SampleAndAggregate, self).__init__(**kwargs)
if aggregator_type == "mean":
self.aggregator_cls = MeanAggregator
elif aggregator_type == "seq":
self.aggregator_cls = SeqAggregator
elif aggregator_type == "maxpool":
self.aggregator_cls = MaxPoolingAggregator
elif aggregator_type == "meanpool":
self.aggregator_cls = MeanPoolingAggregator
elif aggregator_type == "gcn":
self.aggregator_cls = GCNAggregator
else:
raise Exception("Unknown aggregator: ", self.aggregator_cls) # get info from placeholders...
self.inputs1 = placeholders["batch1"]
self.inputs2 = placeholders["batch2"]
self.model_size = model_size
self.adj_info = adj
if identity_dim > 0:
self.embeds = tf.get_variable(
"node_embeddings", [adj.get_shape().as_list()[0], identity_dim])
# self.embeds: record the neigh features embeddings
# number of features = identity_dim
# number of neighbors = adj.get_shape().as_list()[0]
else:
self.embeds = None
if features is None:
if identity_dim == 0:
raise Exception(
"Must have a positive value for identity feature dimension if no input features given.")
self.features = self.embeds
else:
self.features = tf.Variable(tf.constant(
features, dtype=tf.float32), trainable=False)
if not self.embeds is None:
self.features = tf.concat([self.embeds, self.features], axis=1)
self.degrees = degrees
self.concat = concat self.dims = [
(0 if features is None else features.shape[1]) + identity_dim]
self.dims.extend(
[layer_infos[i].output_dim for i in range(len(layer_infos))])
self.batch_size = placeholders["batch_size"]
self.placeholders = placeholders
self.layer_infos = layer_infos self.optimizer = tf.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate) self.build()

(2) sample(inputs, layer_infos, batch_size=None)

对于sample的算法描述,详见论文Appendix A, algorithm 2.

代码:

 def sample(self, inputs, layer_infos, batch_size=None):
""" Sample neighbors to be the supportive fields for multi-layer convolutions. Args:
inputs: batch inputs
batch_size: the number of inputs (different for batch inputs and negative samples).
""" if batch_size is None:
batch_size = self.batch_size
samples = [inputs]
# size of convolution support at each layer per node
support_size = 1
support_sizes = [support_size] for k in range(len(layer_infos)):
t = len(layer_infos) - k - 1
support_size *= layer_infos[t].num_samples
sampler = layer_infos[t].neigh_sampler node = sampler((samples[k], layer_infos[t].num_samples))
samples.append(tf.reshape(node, [support_size * batch_size, ]))
support_sizes.append(support_size) return samples, support_sizes

sampler = layer_infos[t].neigh_sampler

当函数被调用时,layer_infos会被赋值,在unsupervised_train.py中,其中neigh_sampler被赋为UniformNeighborSampler,其在neigh_samplers.py中定义:class UniformNeighborSampler(Layer)。

目的是对于输入的samples[k] (即为上一步sample得到的节点,如上图依次得到黄色区域表示的samples[0],橙色区域表示的samples[1], 粉色区域表示的samples[2]。其中samples[k]是有由对samples[k - 1]中各节点的邻居采样而得),选取num_samples个数的邻居节点的序号(对应上图N(u))。(返回值是adj_lists, 即为被截断为num_samples列数的邻接矩阵。)

这里注意区别support_size与num_samples:

num_sample为当前深度每个节点u所选取的邻居节点的个数为num_samples;

support_size表示当前节点u的embedding受多少节点信息的影响。其既受当前层num_samples个直接邻居的影响,其邻居也受更先前深度num_samples个邻居的影响,以此类推。故support_size是到目前深度为止的各深度下num_samples的连乘积。则对于batch_size个输入节点,总的support个数为: support_size * batch_size。

最后将support_size存进support_sizes的数组中。

sample() 函数最终返回包含各深度下采样点的samples数组与各深度下各点受支持节点数目的support_sizes数组。

2. def _build(self):

 self.neg_samples, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
true_classes=labels,
num_true=1,
num_sampled=FLAGS.neg_sample_size,
unique=False,
range_max=len(self.degrees),
distortion=0.75,
unigrams=self.degrees.tolist()))

(1) tf.nn.fixed_unigram_candidate_sampler:

按照用户提供的概率分布进行采样。
如果类别服从均匀分布,我们就用uniform_candidate_sampler;
如果词作类别,我们知道词服从 Zipfian, 我们就用 log_uniform_candidate_sampler;
如果能够通过统计或者其他渠道知道类别满足某些分布,用 nn.fixed_unigram_candidate_sampler;
如果实在不知道类别分布,我们还可以用 tf.nn.learned_unigram_candidate_sampler。 (2) Paras:
a. num_sampled: sampling_candidates的元素是在没有替换(如果unique = True)的情况下绘制的,
或者是从基本分布中替换(如果unique = False)。 unique = True 可以看作无放回抽样;unique = False 可以看作有放回抽样。 b. distortion: distortion used the word2vec freq energy table formulation
f^(3/4) / total(f^(3/4))
in word2vec energy counted by freq;
in graphsage energy counted by degrees
so in unigrams = [] each ID recored each node's degree c. unigrams: 各个节点的度。 (3) Returns:
a. sampled_candidates: A tensor of type int64 and shape [num_sampled]. The sampled classes.
b. true_expected_count: A tensor of type float. Same shape as true_classes. The expected counts under the sampling distribution of each of true_classes.
c. sampled_expected_count: A tensor of type float. Same shape as sampled_candidates. The expected counts under the sampling distribution of each of sampled_candidates.

-------addtional---------------

1. self.__class__.__name__.lower()

1 if not name:
2 name = self.__class__.__name__.lower()

self.__class__.__name__.lower(): https://stackoverflow.com/questions/36367736/use-name-as-attribute

1 class MyClass:
2 def __str__(self):
3 return str(self.__class__)
>>> instance = MyClass()
>>> print(instance)
__main__.MyClass

That is because the string version of the class includes the module that it is defined in. In this case, it is defined in the module that is currently being executed, the shell, so it shows up as __main__.MyClass. If we use self.__class__.__name__, however:

1 class MyClass:
2 def __str__(self):
3 return self.__class__.__name__
4
5 instance = MyClass()
6 print(instance)

it outputs:

MyClass

The __name__ attribute of the class does not include the module.

Note: The __name__ attribute gives the name originally given to the class. Any copies will keep the name. For example:

1 class MyClass:
2 def __str__(self):
3 return self.__class__.__name__
4
5 SecondClass = MyClass
6
7 instance = SecondClass()
8 print(instance)

output:

MyClass

That is because the __name__ attribute is defined as part of the class definition. Using SecondClass = MyClass is just assigning another name to the class. It does not modify the class or its name in any way.

2. allowed_kwargs = {'name', 'logging', 'model_size'}

其中name,logging,model_size指什么?

name: String, defines the variable scope of the layer.
logging: Boolean, switches Tensorflow histogram logging on/off
model_size: small / big 见aggregates.py: small: hidden_dim =512; big: hidden_dim = 1024

3. python 中参数*args, **kwargs

https://blog.csdn.net/anhuidelinger/article/details/10011013

 1 def foo(*args, **kwargs):
2 print 'args = ', args
3 print 'kwargs = ', kwargs
4 print '---------------------------------------'
5
6 if __name__ == '__main__':
7 foo(1,2,3,4)
8 foo(a=1,b=2,c=3)
9 foo(1,2,3,4, a=1,b=2,c=3)
10 foo('a', 1, None, a=1, b='2', c=3)
11
12 # Output:
13 # args = (1, 2, 3, 4)
14 # kwargs = {}
15
16 # args = ()
17 # kwargs = {'a': 1, 'c': 3, 'b': 2}
18
19 # args = (1, 2, 3, 4)
20 # kwargs = {'a': 1, 'c': 3, 'b': 2}
21
22 # args = ('a', 1, None)
23 # kwargs = {'a': 1, 'c': 3, 'b': '2'}

1. 可以看到,这两个是python中的可变参数。

*args表示任何多个无名参数,它是一个tuple;

**kwargs表示关键字参数,它是一个 dict。

并且同时使用*args和**kwargs时,必须*args参数列要在**kwargs前.

像foo(a=1, b='2', c=3, a', 1, None, )这样调用的话,会提示语法错误“SyntaxError: non-keyword arg after keyword arg”。

2. 何时使用**kwargs:

Using **kwargs and default values is easy. Sometimes, however, you shouldn't be using **kwargs in the first place.

In this case, we're not really making best use of **kwargs.

1 class ExampleClass( object ):
2 def __init__(self, **kwargs):
3 self.val = kwargs.get('val',"default1")
4 self.val2 = kwargs.get('val2',"default2")

The above is a "why bother?" declaration. It is the same as

1 class ExampleClass( object ):
2 def __init__(self, val="default1", val2="default2"):
3 self.val = val
4 self.val2 = val2

When you're using **kwargs, you mean that a keyword is not just optional, but conditional. There are more complex rules than simple default values.

When you're using **kwargs, you usually mean something more like the following, where simple defaults don't apply.

 1 class ExampleClass( object ):
2 def __init__(self, **kwargs):
3 self.val = "default1"
4 self.val2 = "default2"
5 if "val" in kwargs:
6 self.val = kwargs["val"]
7 self.val2 = 2*self.val
8 elif "val2" in kwargs:
9 self.val2 = kwargs["val2"]
10 self.val = self.val2 / 2
11 else:
12 raise TypeError( "must provide val= or val2= parameter values" )

3. logging = kwargs.get('logging', False) : default value: false

https://stackoverflow.com/questions/1098549/proper-way-to-use-kwargs-in-python

You can pass a default value to get() for keys that are not in the dictionary:

1 self.val2 = kwargs.get('val2',"default value")

However, if you plan on using a particular argument with a particular default value, why not use named arguments in the first place?

1 def __init__(self, val2="default value", **kwargs):

4. tf.variable_scope()

https://blog.csdn.net/IB_H20/article/details/72936574

5. masked_softmax_cross_entropy ?  见metrics.py

1 # Cross entropy error
2 if self.categorical:
3 self.loss += metrics.masked_softmax_cross_entropy(self.outputs, self.placeholders['labels'],
4 self.placeholders['labels_mask'])
1 def masked_logit_cross_entropy(preds, labels, mask):
2 """Logit cross-entropy loss with masking."""
3 loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=preds, labels=labels)
4 loss = tf.reduce_sum(loss, axis=1)
5 mask = tf.cast(mask, dtype=tf.float32)
6 mask /= tf.maximum(tf.reduce_sum(mask), tf.constant([1.]))
7 loss *= mask
8 return tf.reduce_mean(loss)

=======================================

             

感谢您的打赏!

(梦想还是要有的,万一您喜欢我的文章呢)

GraphSAGE 代码解析(四) - models.py的更多相关文章

  1. GraphSAGE 代码解析(三) - aggregators.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...

  2. GraphSAGE 代码解析(二) - layers.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(三) - aggregator ...

  3. GraphSAGE 代码解析(一) - unsupervised_train.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(二) - layers.py GraphSAGE 代码解析(三) - aggregators.py GraphSA ...

  4. GraphSAGE 代码解析 - minibatch.py

    class EdgeMinibatchIterator """ This minibatch iterator iterates over batches of samp ...

  5. django搭建web (四) models.py

    demo 该demo模型主要是用于问题,选择单个或多个答案的问卷形式应用 # -*- coding: utf-8 -*- from __future__ import unicode_literals ...

  6. 第三百七十四节,Django+Xadmin打造上线标准的在线教育平台—创建课程app,在models.py文件生成4张表,课程表、课程章节表、课程视频表、课程资源表

    第三百七十四节,Django+Xadmin打造上线标准的在线教育平台—创建课程app,在models.py文件生成4张表,课程表.课程章节表.课程视频表.课程资源表 创建名称为app_courses的 ...

  7. 四 Django框架,models.py模块,数据库操作——创建表、数据类型、索引、admin后台,补充Django目录说明以及全局配置文件配置

    Django框架,models.py模块,数据库操作——创建表.数据类型.索引.admin后台,补充Django目录说明以及全局配置文件配置 数据库配置 django默认支持sqlite,mysql, ...

  8. RobHess的SIFT代码解析步骤四

    平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码 2.书:王永明 ...

  9. 用 TensorFlow 实现 k-means 聚类代码解析

    k-means 是聚类中比较简单的一种.用这个例子说一下感受一下 TensorFlow 的强大功能和语法. 一. TensorFlow 的安装 按照官网上的步骤一步一步来即可,我使用的是 virtua ...

随机推荐

  1. 【luogu P1865 A % B Problem】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1865 其实就是埃拉托色尼筛素数模板... 好像每个数暴力枚举到sqrt()也可以...就算当我无聊练手罢 # ...

  2. Linux 和类 Unix 系统上5个最佳开源备份工具

    转载:http://linux.cn/article-4623-weixin.html#rd?sukey=cbbc36a2500a2e6cb7678c4d38b691a9fa7403b259f898e ...

  3. python使用sqlalchemy连接mysql数据库

    环境:centos7+python2.7.5+sqlalchemy sqlalchemy是python当中比较出名的orm程序.在python中,使用sqlalchemy连接mysql数据库进行操作非 ...

  4. 配置隐私协议 - iOS

    根据苹果隐私协议新规的推出,要求所有应用包含隐私保护协议,故为此在 App 中添加了如下隐私协议模块. 首次安装 App 的情况下默认调用隐私协议模块展示相关信息一次,当用户点击同意按钮后,从此不再执 ...

  5. DB数据源配置之抽象(〇)

    DB数据源配置之抽象(〇) liuyuhang原创,未经允许禁止转载 DB数据源之SpringBoot+Mybatis踏坑过程实录(一) DB数据源之SpringBoot+MyBatis踏坑过程(二) ...

  6. QT基于model/view数据库编程2

    Qt中数据编程主要分为以下两点:1.利用qt提供类 访问数据库或者成为简单的数据库编程2.数据库编程中引入model/view编程模型 基于model/view数据库编程: qt提供model类: Q ...

  7. P3818 小A和uim之大逃离 II(bfs,有条件的广搜)

    题目背景 话说上回……还是参见 https://www.luogu.org/problem/show?pid=1373 吧 小a和uim再次来到雨林中探险.突然一阵南风吹来,一片乌云从南部天边急涌过来 ...

  8. Java集合类——Set、List、Map、Queue接口

    目录 Java 集合类的基本概念 Java 集合类的层次关系 Java 集合类的应用场景 一. Java集合类的基本概念 在编程中,常需要集中存放多个数据,数组是一个很好的选择,但数组的长度需提前指定 ...

  9. mysql的密码忘记了,怎么办, 来来来.

    尤其是在学习的过程, 也是天天和数据库打交道, 难免会有脑子短路的时候, 比如root密码忘记了, 你说怎么办~~~, 没关系, 往下看 mysql提供了一种跳过用户认证的配置, 参数, 你配置上这个 ...

  10. JavaScript--获取页面盒子中鼠标相对于盒子上、左边框的坐标

    分析: 外层边框是浏览器边框,内部盒子是页面的一个盒子,绿点是盒子中鼠标的位置.鼠标相对盒子边框的坐标=页面中(注意不是浏览器)鼠标坐标-盒子相对于浏览器边框的偏移量 第一步:求浏览器边框位置 x=e ...