【bzoj2326】[HNOI2011]数学作业 矩阵乘法
题目描述
.jpg)
题解
矩阵乘法
考虑把相同位数的数放到一起处理:
设有$k$位的数为$[l,r]$,那么枚举从大到小的第$i$个数(即枚举$r-i+1$),考虑其对$Concatenate(l..r)$的贡献:
$v_i=(r-i+1)10^{k(i-1)}$
所以要求的就是:
$\sum\limits_{i=1}^{r-l+1}(r-i+1)10^{k(i-1)}\mod m\ =\ \sum\limits_{i=0}^{r-l}(r-i)10^{ki}\mod m$
这个式子可以使用矩阵乘法解决。具体方法:
$\begin{bmatrix}(r-i)10^{ki}&10^{ki}&sum_{i-1}\end{bmatrix}*\begin{bmatrix}10^k&0&1\\-10^k&10^k&0\\0&0&1\end{bmatrix}=\begin{bmatrix}(r-i-1)10^{k(i+1)}&10^{k(i+1)}&sum_i\end{bmatrix}$
然后再乘上$10^{该位后面的位数}$即为它们对答案的贡献。把所有位数的数的贡献加起来即为答案。
注意需要unsigned long long。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
int m;
struct data
{
ull v[3][3];
data(ull x = 0) {memset(v , 0 , sizeof(v)) , v[0][0] = v[1][1] = v[2][2] = x;}
ull *operator[](int a) {return v[a];}
data operator*(data a)
{
data ans;
int i , j , k;
for(i = 0 ; i < 3 ; i ++ )
for(j = 0 ; j < 3 ; j ++ )
for(k = 0 ; k < 3 ; k ++ )
ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % m;
return ans;
}
}a;
data pow(data x , ull y)
{
data ans(1);
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
ull pow(ull x , ull y)
{
ull ans = 1;
while(y)
{
if(y & 1) ans = ans * x % m;
x = x * x % m , y >>= 1;
}
return ans;
}
int main()
{
ull i , j , n , now = 1 , ans = 0;
scanf("%llu%d" , &n , &m);
for(i = 1000000000000000000ull , j = 19 ; i ; i /= 10 , j -- )
{
if(n < i) continue;
a[0][0] = a[1][1] = i % m * 10 % m , a[1][0] = (m - a[0][0]) % m , a[0][2] = a[2][2] = 1 , a[0][1] = a[1][2] = a[2][0] = a[2][1] = 0;
a = pow(a , n - i + 1);
ans = (ans + (n % m * a[0][2] % m + a[1][2]) * now) % m , now = now * pow(10 , j * (n - i + 1)) % m , n = i - 1;
}
printf("%llu\n" , ans);
return 0;
}
【bzoj2326】[HNOI2011]数学作业 矩阵乘法的更多相关文章
- [BZOJ2326] [HNOI2011] 数学作业 (矩阵乘法)
Description Input Output Sample Input Sample Output HINT Source Solution 递推式长这样:$f[n]=f[n-1]*10^k+n$ ...
- BZOJ 2326: [HNOI2011]数学作业(矩阵乘法)
传送门 解题思路 NOIp前看到的一道题,当时想了很久没想出来,NOIp后拿出来看竟然想出来了.注意到有递推\(f[i]=f[i-1]*poww[i]+i\),\(f[i]\)表示\(1-i\)连接起 ...
- BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...
- BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )
BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...
- bzoj2326: [HNOI2011]数学作业
矩阵快速幂,分1-9,10-99...看黄学长的代码理解...然而他直接把答案保存在最后一行(没有说明...好吧应该是我智障这都不知道... #include<cstdio> #inclu ...
- [HNOI2011]数学作业 --- 矩阵优化
[HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...
- 【BZOJ2326】【HNOI2011】数学作业 [矩阵乘法][DP]
数学作业 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 输入文件只有一行为用空 ...
- 洛谷P3216 [HNOI2011] 数学作业 [矩阵加速,数论]
题目传送门 数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N和 M,要求计算 Concatenate (1 .. N)Mod M 的值,其中 C ...
- bzoj2326:[HNOI2011]数学作业(分段矩阵乘法)
题目大意:输入n(n<=10^18)和m,将1~n的整数连起来模m输出,比如n=13则输出12345678910111213模m的数. 设f[i]为1~i整数连起来模m的数,i的位数为k,则有f ...
随机推荐
- Co. - Apple - Apple ID
有些应用或游戏,在国内 App Store 没上架或者被下架了,但是其他国家或地区(如美国.香港和台湾等)的 App Store 却提供下载,这时我们需要登陆一个相应地区的 Apple ID 才可以下 ...
- java对象中的三种状态和脏检查及刷新缓存机制
瞬时状态 瞬时状态又称临时状态.如果java对象与数据库中的数据没有任何的关联,即此java对象在数据库中没有相关联的记录,此时java对象的状态为瞬时状态,session对于 瞬时状态的ava对象是 ...
- 使用virtual安装Windows系列操作系统总结
最近在安装Windows操作系统的过程中,发现总是报错,无法安装成功,后来经过不断地摸索,发现根本的问题在于镜像,所以在以后的大文件传输下载后,一定要校验其MD5值是否与源文件一致,需要的朋友可以联系 ...
- python爬虫:爬取链家深圳全部二手房的详细信息
1.问题描述: 爬取链家深圳全部二手房的详细信息,并将爬取的数据存储到CSV文件中 2.思路分析: (1)目标网址:https://sz.lianjia.com/ershoufang/ (2)代码结构 ...
- python基础,导入模块,if语句,while语句
python基础 python代码 变为字节码 变为机器码 最后执行执行‘文件名.py’文件时出现的‘文件名.pyc’文件为字节码 缓存机制 使用pycharm的时候在文件最开始添加下面这两行代码,中 ...
- css常用样式属性详细介绍
对于初学css的来说,肯定会觉得这么多样式不好记,而且记住了也容易忘,其实刚开始我们不用去记这么多的样式,确实是记了也会忘,刚开始只需记住一些常用的就可以了,然后在慢慢的使用过程当中接触并学习一些高级 ...
- TRANSLATE(转换大/小写并替换字符)
可以将字母 转换大/小 写或使用替 换规则. 要转换大/小 写,请使用 TRANSLATE 语句,用法 如下: 语法 TRANSLATE <c> TO UPPER CASE. TRANSL ...
- nginx+tomcat 反向代理 负载均衡配置
1.nginx的安装和配置见:http://www.cnblogs.com/ll409546297/p/6795362.html 2.tomcat部署项目到对应的服务器上面并启动,不详解 3.在ngi ...
- ubuntu设置ssh登陆
转: 默认请况下,ubuntu是不允许远程登陆的.(因为服务没有开,可以这么理解.) 想要用ssh登陆的话,要在需要登陆的系统上启动服务.即,安装ssh的服务器端 $ sudo apt-get ins ...
- 使用apache的ab压力测试时失败请求原因
只要出现 Failed requests 就会多出现一行要求失败的各原因的数据统计,分别有 Connect, Length,与 Exception 三种,分别代表的意义为:Connect 无 ...