1. 引言

本文基于C++语言,描述OpenGL的摄像机

前置知识可参考:

笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:

2. 概述

OpenGL的坐标变换流程图如下:

有图可知:

  • 摄像机的参数(如,位置、视点、方向)决定视图

根据变化的相对性,控制摄像机的参数可以看成物体的变化(如,摄像机后移相当于物体后移)

观察矩阵可由摄像机的位置、视点和方向计算,如下图:

计算公式:

\[LookAt = \begin{bmatrix} \color{red}{R_x} & \color{red}{R_y} & \color{red}{R_z} & 0 \\ \color{green}{U_x} & \color{green}{U_y} & \color{green}{U_z} & 0 \\ \color{blue}{D_x} & \color{blue}{D_y} & \color{blue}{D_z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 & -\color{purple}{P_x} \\ 0 & 1 & 0 & -\color{purple}{P_y} \\ 0 & 0 & 1 & -\color{purple}{P_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}

\]

其中R是右向量,U是上向量,D是方向向量,P是摄像机位置向量;

位置向量是相反的,因为我们最终希望把世界平移到与我们自身移动的相反方向

3. 编码

控制摄像机的参数实质就是控制观察矩阵(view)

生成一个观察矩阵需要位置、视点和方向向量,GLM的lookAt()函数可用于生成观察矩阵:

glm::mat4 view = glm::mat4(1.0f);
view = glm::lookAt(glm::vec3(0.0f, 0.0f, -3.0f),
glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.0f));

可选项,让摄像机的位置绕圆转动,会形成物体转动的感觉

glm::mat4 view = glm::mat4(1.0f);
float radius = 10.0f;
float camX = sin(glfwGetTime()) * radius;
float camZ = cos(glfwGetTime()) * radius;
view = glm::lookAt(glm::vec3(camX, 0.0f, camZ),
glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.0f));

运行一下,结果图如下:

4. 自由移动

控制摄像机的位置可以实现视角的前后左右上下移动

摄像机参数:

glm::vec3 cameraPos   = glm::vec3(0.0f, 0.0f,  3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);

观察矩阵:

view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);

使用按键WSAD实现前后左右移动:

void processInput(GLFWwindow *window)
{
...
float cameraSpeed = 0.05f; // adjust accordingly
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

5. 视角移动

根据鼠标变化计算视角变化

float lastX = 0.0f, lastY = 0.0f;
bool firstMouse = true;
// 鼠标变化
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if(firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
} float xoffset = xpos - lastX;
float yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos; float sensitivity = 0.05;
xoffset *= sensitivity;
yoffset *= sensitivity; yaw += xoffset;
pitch += yoffset; if(pitch > 89.0f)
pitch = 89.0f;
if(pitch < -89.0f)
pitch = -89.0f; glm::vec3 front;
front.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
front.y = sin(glm::radians(pitch));
front.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
cameraFront = glm::normalize(front);
}

6. 滚轮缩放

根据透视投影的视角大小实现物体的缩放

float fov = 30.0f;
// 鼠标滚轮变化
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
if(fov >= 1.0f && fov <= 45.0f)
fov -= yoffset;
if(fov <= 1.0f)
fov = 1.0f;
if(fov >= 45.0f)
fov = 45.0f;
}
...
// 投影矩阵
projection = glm::perspective(glm::radians(fov), 800.0f / 600.0f, 0.1f, 100.0f);

7. 完整代码

按照上述步骤,如果顺利的话,已经实现了按键WSAD的移动、鼠标的视角移动和滚轮缩放

主要文件test.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <math.h>
#include "Shader.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale
#include <glm/ext/matrix_clip_space.hpp> // glm::perspective
#include <glm/gtc/type_ptr.hpp> //全局变量
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
float lastX = 400.0f, lastY = 300.0f, yaw = -90.0f, pitch = 0.0f, fov = 30.0f;
bool firstMouse = true; // 函数声明
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void process_input(GLFWwindow *window);
unsigned int *renderInit();
void render(unsigned int shaderProgram, unsigned int VAO, unsigned int texture1, unsigned int texture2);
bool checkCompile(unsigned int shader);
bool checkProgram(unsigned int shaderProgram);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset); int main()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow *window = glfwCreateWindow(800, 600, "CoordinateSystem", nullptr, nullptr); if (window == nullptr)
{
std::cout << "Faild to create window" << std::endl;
glfwTerminate();
}
glfwMakeContextCurrent(window); if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Faild to initialize glad" << std::endl;
return -1;
}
glad_glViewport(0, 0, 800, 600);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback); unsigned int *arr = renderInit(); while (!glfwWindowShouldClose(window))
{
process_input(window); // render
std::cout << arr[0] << " " << arr[1] << " " << arr[2] << " " << arr[3] << " " << arr[4] << std::endl;
render(arr[0], arr[1], arr[3], arr[4]); glfwSwapBuffers(window);
glfwPollEvents();
} glDeleteProgram(arr[0]);
glDeleteVertexArrays(1, &arr[1]);
glDeleteBuffers(1, &arr[2]); glfwTerminate();
return 0;
} void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{
glViewport(0, 0, width, height);
} void process_input(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, true);
}
float cameraSpeed = 0.05f; // adjust accordingly
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
} // 鼠标变化
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if(firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
} float xoffset = xpos - lastX;
float yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos; float sensitivity = 0.05;
xoffset *= sensitivity;
yoffset *= sensitivity; yaw += xoffset;
pitch += yoffset; if(pitch > 89.0f)
pitch = 89.0f;
if(pitch < -89.0f)
pitch = -89.0f; glm::vec3 front;
front.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
front.y = sin(glm::radians(pitch));
front.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
cameraFront = glm::normalize(front);
} // 鼠标滚轮变化
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
if(fov >= 1.0f && fov <= 45.0f)
fov -= yoffset;
if(fov <= 1.0f)
fov = 1.0f;
if(fov >= 45.0f)
fov = 45.0f;
} unsigned int *renderInit()
{
//配置项
glEnable(GL_DEPTH_TEST); unsigned int VAO;
glGenVertexArrays(1, &VAO);
glBindVertexArray(VAO); unsigned int texture1;
glGenTextures(1, &texture1);
glBindTexture(GL_TEXTURE_2D, texture1);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
int width, height, nrChannels;
unsigned char *data = stbi_load("../container.jpg", &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
}
else
{
std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data); unsigned int texture2;
glGenTextures(1, &texture2);
glBindTexture(GL_TEXTURE_2D, texture2);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// // 加载并生成纹理
int width2, height2, nrChannels2;
stbi_set_flip_vertically_on_load(true);
unsigned char *data2 = stbi_load("../awesomeface.png", &width2, &height2, &nrChannels2, 0);
if (data2)
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width2, height2, 0, GL_RGBA, GL_UNSIGNED_BYTE, data2);
glGenerateMipmap(GL_TEXTURE_2D);
}
else
{
std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data2); float vertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f}; unsigned int VBO;
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void *)(3 * sizeof(float)));
glEnableVertexAttribArray(1); Shader shaderProgram = Shader("../test.vs.glsl", "../test.fs.glsl");
shaderProgram.use(); glUniform1i(glGetUniformLocation(shaderProgram.ID, "texture1"), 0);
glUniform1i(glGetUniformLocation(shaderProgram.ID, "texture2"), 1);
return new unsigned int[5]{shaderProgram.ID, VAO, VBO, texture1, texture2};
} void render(unsigned int shaderProgram, unsigned int VAO, unsigned int texture1, unsigned int texture2)
{
glClearColor(0.2, 0.3, 0.3, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture1);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texture2);
glUseProgram(shaderProgram); glm::vec3 cubePositions[] = {
glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(2.0f, 5.0f, -15.0f),
glm::vec3(-1.5f, -2.2f, -2.5f),
glm::vec3(-3.8f, -2.0f, -12.3f),
glm::vec3(2.4f, -0.4f, -3.5f),
glm::vec3(-1.7f, 3.0f, -7.5f),
glm::vec3(1.3f, -2.0f, -2.5f),
glm::vec3(1.5f, 2.0f, -2.5f),
glm::vec3(1.5f, 0.2f, -1.5f),
glm::vec3(-1.3f, 1.0f, -1.5f)}; glm::mat4 view = glm::mat4(1.0f);
// 注意,我们将矩阵向我们要进行移动场景的反方向移动。
// view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
// float radius = 10.0f;
// float camX = sin(glfwGetTime()) * radius;
// float camZ = cos(glfwGetTime()) * radius;
// view = glm::lookAt(glm::vec3(camX, 20.0f, camZ),
// glm::vec3(0.0f, 0.0f, 0.0f),
// glm::vec3(0.0f, 1.0f, 0.0f));
view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);
glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(glm::radians(fov), 800.0f / 600.0f, 0.1f, 100.0f);
// 模型矩阵
int modelLoc = glGetUniformLocation(shaderProgram, "model");
// 观察矩阵
int viewLoc = glGetUniformLocation(shaderProgram, "view");
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
// 投影矩阵
int projectionLoc = glGetUniformLocation(shaderProgram, "projection");
glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection)); glBindVertexArray(VAO);
for (unsigned int i = 0; i < 10; i++)
{
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
float angle = 20.0f * (i + 1);
model = glm::rotate(model, (float)glfwGetTime() * glm::radians(50.0f), glm::vec3(1.0f, 0.3f, 0.5f));
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); glDrawArrays(GL_TRIANGLES, 0, 36);
}
}

顶点着色器test.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord; out vec2 TexCoord; uniform mat4 model;
uniform mat4 view;
uniform mat4 projection; void main()
{
// 注意乘法要从右向左读
gl_Position = projection * view * model * vec4(aPos, 1.0);
TexCoord = aTexCoord;
}

片段着色器test.fs.glsl

#version 330 core
out vec4 FragColor; in vec2 TexCoord; uniform sampler2D texture1;
uniform sampler2D texture2; void main()
{
FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);
}

8. 参考资料

[1]摄像机 - LearnOpenGL CN (learnopengl-cn.github.io)

[2]OpenGL学习笔记(八)摄像机 - 知乎 (zhihu.com)

基于C++的OpenGL 06 之摄像机的更多相关文章

  1. 基于Cocos2d-x学习OpenGL ES 2.0之多纹理

    没想到原文出了那么多错别字,实在对不起观众了.介绍opengl es 2.0的不多.相信介绍基于Cocos2d-x学习OpenGL ES 2.0之多纹理的,我是独此一家吧.~~ 子龙山人出了一个系列: ...

  2. 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)

    在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...

  3. 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)

    在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...

  4. 1、基于MFC的OpenGL程序

    首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   工程openGLMFC 1.创建单文本文件   2.添加路径.链接 方法如之前篇章所示, 链接库为op ...

  5. 【游戏开发】基于VS2017的OpenGL开发环境搭建

    一.简介 最近,马三买了两本有关于“计算机图形学”的书籍,准备在工作之余鼓捣鼓捣图形学和OpenGL编程,提升自己的价值(奔着学完能涨一波工资去的).俗话说得好,“工欲善其事,必先利其器”.想学习图形 ...

  6. 基于MFC的OpenGL程序<转>

    原贴地址:https://www.cnblogs.com/pinking/p/6180225.html 首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   ...

  7. 基于Cocos2d-x学习OpenGL ES 2.0系列——你的第一个立方体(5)

    在上篇文章中,我们介绍了VBO索引的使用,使用VBO索引可以有效地减少顶点个数,优化内存,提高程序效率. 本教程将带领大家一起走进3D--绘制一个立方体.其实画立方体本质上和画三角形没什么区别,所有的 ...

  8. 基于对话框的Opengl框架

    转自:http://blog.csdn.net/longxiaoshi/article/details/8238933 12-11-29 14:55 1198人阅读 评论(6) 收藏 举报  分类: ...

  9. 基于EasyIPCamera实现的数字网络摄像机IPCamera的模拟器IPC RTSP Simulator

    还记得去年在北京安博会上,看到一些厂家的展示台上,各种船舶.公路.车辆的高清视频直播,好奇这些数据是怎么接到现场的,现场成百上千家展台,不可能有那么大的带宽供应,细想数据肯定不是实时的,果然,盯着看了 ...

  10. 基于Cocos2d-x学习OpenGL ES 2.0系列——编写自己的shader(2)

    在上篇文章中,我给大家介绍了如何在Cocos2d-x里面绘制一个三角形,当时我们使用的是Cocos2d-x引擎自带的shader和一些辅助函数.在本文中,我将演示一下如何编写自己的shader,同时, ...

随机推荐

  1. Day34:BigDecimal的使用

    BigDecimal 在基本数据类型中对于浮点数的计算时会出现精度丢失的情况,这个时候我们采用BigDecimal类来解决精度丢失的问题. public class Test{ public stat ...

  2. 记录Typescript的学习调试笔记(比 javascript更具面向对象,强类型检查,静态字段,适合现代的大团队分工与管理风格).

    1.)先来一段Typescript的环境安装. 安装nodejs ,下载地址:https://nodejs.org/en/download/                 //(node-v12.1 ...

  3. [C++]C++11右值引用

    右值引用的概念(摘自C++Primer) 左值和右值的概念 1.左值和右值是表达式的属性,一些表达式要求生成左值,一些表达式要求生成右值:左值表达式通常是一个对象的身份,而一个右值表达式表示的是对象的 ...

  4. react 高效高质量搭建后台系统 系列 —— 登录

    其他章节请看: react 高效高质量搭建后台系统 系列 登录 本篇将完成登录模块.效果和 spug 相同: 需求如下: 登录页的绘制 支持普通登录和LDAP登录 登录成功后跳转到主页,没有登录的情况 ...

  5. swift中cocoapods问题

    设置完Podfile后,pod install出现   终端   pod repo add master https://github.com/CocoaPods/Specs.git 出现如下提示   ...

  6. 自己的devc++的语法配置

    效果如下

  7. day06-Spring管理Bean-IOC-04

    Spring管理Bean-IOC-04 3.基于注解配置bean 3.1基本使用 3.1.1说明 基本说明:基于注解的方式配置bean,主要是项目开发中的组件,比如Controller,Service ...

  8. echarts图表配置

    1.柱状图 option = { xAxis: { type: 'category', data: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] ...

  9. 如何让Java编译器帮你写代码

    作者:京东零售 刘世杰 导读 本文结合京东监控埋点场景,对解决样板代码的技术选型方案进行分析,给出最终解决方案后,结合理论和实践进一步展开.通过关注文中的技术分析过程和技术场景,读者可收获一种样板代码 ...

  10. Java 进阶P-5.3+P-5.4

    封装 增加可扩展性 可以运行的代码!=良好的代码 对代码做维护的时候最能看出代码的质量 如果想要增加一个方向,如down或up 用封装来降低耦合 Room类和Game类都有大量的代码和出口相关 尤其是 ...