1. 引言

本文基于C++语言,描述OpenGL的投光物

前置知识可参考:

笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:

2. 概述

投光物,即光源,主要有平行光源、点光源和聚光源

平行光源可以使用一个方向向量来模拟

点光源可以使用一个点来模拟,另外,点光源应该有衰减模拟,衰减公式为

\[\begin{equation} F_{att} = \frac{1.0}{K_c + K_l * d + K_q * d^2} \end{equation}

\]

  • 常数项通常保持为1.0,它的主要作用是保证分母永远不会比1小,否则的话在某些距离上它反而会增加强度
  • 一次项会与距离值相乘,以线性的方式减少强度
  • 二次项会与距离的平方相乘,让光源以二次递减的方式减少强度

\(K_l\)与\(K_q\)的取值可以参考实验值:-Point Light Attenuation | Ogre Wiki (ogre3d.org)

聚光源类似于手电筒、聚光灯,只照亮灯光方向的一部分,如下图所示

图中,参数含义如下:

  • LightDir:从片段指向光源的向量
  • SpotDir:聚光所指向的方向
  • Phi\(\phi\):指定了聚光半径的切光角。落在这个角度之外的物体都不会被这个聚光所照亮
  • Theta\(\theta\):LightDir向量和SpotDir向量之间的夹角。在聚光内部的话θ值应该比ϕ值小

计算LightDir向量和SpotDir向量之间的点积得到两个单位向量夹角的余弦值,并将它与切光角ϕ值对比,即可判断是否被照亮

3. 编码

3.1 平行光

使用一个光线方向向量来模拟平行光

在片段着色器中定义光线的方向向量:

struct Light {
// vec3 position; // 使用定向光就不再需要了
vec3 direction; vec3 ambient;
vec3 diffuse;
vec3 specular;
};
...
void main()
{
vec3 lightDir = normalize(-light.direction);
...
}

输入方向向量:

lightingShader.setVec3("light.direction", -1.0f, 0.0f, 0.0f);

结果如下:

3.2 点光源

给定一个点位置来模拟点光源,并且设置衰减的参数

这里\(K_l\)与\(K_q\)的取值使用的是50米光源的实验值,分别0.09、0.032

在片段着色器中定义参数:

struct Light {
vec3 position; vec3 ambient;
vec3 diffuse;
vec3 specular; float constant;
float linear;
float quadratic;
};

计算衰减:

float distance    = length(light.position - FragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance +
light.quadratic * (distance * distance));
ambient *= attenuation;
diffuse *= attenuation;
specular *= attenuation;

想GPU输入数据:

lightingShader.setFloat("light.constant",  1.0f);
lightingShader.setFloat("light.linear", 0.09f);
lightingShader.setFloat("light.quadratic", 0.032f);

实现效果如下:

3.3 聚光源

在片段着色器中定义聚光源的参数:

struct Light {
vec3 position;
vec3 direction;
float cutOff;
...
};

计算是否照亮:

float theta = dot(lightDir, normalize(-light.direction));

if(theta > light.cutOff)
{
// 执行光照计算
}
else // 否则,使用环境光,让场景在聚光之外时不至于完全黑暗
color = vec4(light.ambient * vec3(texture(material.diffuse, TexCoords)), 1.0);

向GPU传输数据:

lightingShader.setVec3("light.position",  cameraPos);
lightingShader.setVec3("light.direction", cameraFront);
lightingShader.setFloat("light.cutOff", glm::cos(glm::radians(35.0f)));

结果如下:

目前看起来边缘过渡,使用一个外半径进行边缘过渡是必要的

计算公式为:

\[\begin{equation} I = \frac{\theta - \gamma}{\epsilon} \end{equation}
\]

这里\(\epsilon\)(Epsilon)是内(\(\theta\))和外圆锥(\(\gamma\))之间的余弦值差(\(\epsilon = \phi - \gamma\)),最终的\(I\)值就是在当前片段聚光的强度

在片段着色器中定义参数:

struct Light {
float outerCutOff;
...
};
...
void main()
{
....
float theta = dot(lightDir, normalize(-light.direction));
float epsilon = light.cutOff - light.outerCutOff;
float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);
...
// 将不对环境光做出影响,让它总是能有一点光
diffuse *= intensity;
specular *= intensity;
...
}

输入数据:

lightingShader.setFloat("light.outerCutOff", glm::cos(glm::radians(40.0f)));

实现效果如下:

4. 完整代码

主要文件caster.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <math.h>
#include "Shader.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale
#include <glm/ext/matrix_clip_space.hpp> // glm::perspective
#include <glm/gtc/type_ptr.hpp> //全局变量
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 lightPos(0.8f, 1.0f, 2.0f); // 函数声明
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void process_input(GLFWwindow *window); int main()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow *window = glfwCreateWindow(800, 600, "caster", nullptr, nullptr); if (window == nullptr)
{
std::cout << "Faild to create window" << std::endl;
glfwTerminate();
}
glfwMakeContextCurrent(window); if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Faild to initialize glad" << std::endl;
return -1;
}
glad_glViewport(0, 0, 800, 600);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); //配置项
glEnable(GL_DEPTH_TEST); Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl");
Shader lightingShader("../cube.vs.glsl", "../cube.fs.glsl"); unsigned int cubeVAO;
glGenVertexArrays(1, &cubeVAO);
glBindVertexArray(cubeVAO); float vertices[] = {
// positions // normals // texture coords
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f
};
unsigned int VBO;
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)(3*sizeof(float)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)(6*sizeof(float)));
glEnableVertexAttribArray(2); // 纹理
unsigned int texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
int width, height, nrChannels;
unsigned char *data = stbi_load("../container2.png", &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
}
else
{
std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data);
lightingShader.setInt("material.diffuse", 0); // 镜面反射纹理
unsigned int texture1;
glGenTextures(1, &texture1);
glBindTexture(GL_TEXTURE_2D, texture1);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
data = stbi_load("../container2_specular.png", &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
}
else
{
std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data);
lightingShader.setInt("material.diffuse", 1); unsigned int lightCubeVAO;
glGenVertexArrays(1, &lightCubeVAO);
glBindVertexArray(lightCubeVAO);
// 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0); // positions all containers
glm::vec3 cubePositions[] = {
glm::vec3( 0.0f, 0.0f, 0.0f),
glm::vec3( 2.0f, 5.0f, -15.0f),
glm::vec3(-1.5f, -2.2f, -2.5f),
glm::vec3(-3.8f, -2.0f, -12.3f),
glm::vec3( 2.4f, -0.4f, -3.5f),
glm::vec3(-1.7f, 3.0f, -7.5f),
glm::vec3( 1.3f, -2.0f, -2.5f),
glm::vec3( 1.5f, 2.0f, -2.5f),
glm::vec3( 1.5f, 0.2f, -1.5f),
glm::vec3(-1.3f, 1.0f, -1.5f)
}; while (!glfwWindowShouldClose(window))
{
process_input(window); glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texture1); lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
lightingShader.setVec3("lightPos", lightPos);
lightingShader.setVec3("viewPos", cameraPos);
lightingShader.setFloat("material.shininess", 32.0f);
lightingShader.setVec3("light.ambient", 0.2f, 0.2f, 0.2f);
lightingShader.setVec3("light.diffuse", 0.5f, 0.5f, 0.5f); // 将光照调暗了一些以搭配场景
lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);
// lightingShader.setVec3("light.direction", -1.0f, 0.0f, 0.0f);
// lightingShader.setFloat("light.constant", 1.0f);
// lightingShader.setFloat("light.linear", 0.09f);
// lightingShader.setFloat("light.quadratic", 0.032f);
lightingShader.setVec3("light.position", cameraPos);
lightingShader.setVec3("light.direction", cameraFront);
lightingShader.setFloat("light.cutOff", glm::cos(glm::radians(35.0f)));
lightingShader.setFloat("light.outerCutOff", glm::cos(glm::radians(40.0f))); glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f)); glm::mat4 view = glm::mat4(1.0f);
// view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp); glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f); // 模型矩阵
int modelLoc = glGetUniformLocation(lightingShader.ID, "model");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// 观察矩阵和投影矩阵与之类似
int viewLoc = glGetUniformLocation(lightingShader.ID, "view");
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection");
glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection)); // render the cube
glBindVertexArray(cubeVAO);
// glDrawArrays(GL_TRIANGLES, 0, 36);
for (unsigned int i = 0; i < 10; i++)
{
// calculate the model matrix for each object and pass it to shader before drawing
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
float angle = 20.0f * i;
model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
lightingShader.setMat4("model", model); glDrawArrays(GL_TRIANGLES, 0, 36);
} // also draw the lamp object
// lightCubeShader.use();
// lightCubeShader.setMat4("projection", projection);
// lightCubeShader.setMat4("view", view);
// model = glm::mat4(1.0f);
// model = glm::translate(model, lightPos);
// model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
// lightCubeShader.setMat4("model", model); // glBindVertexArray(lightCubeVAO);
// glDrawArrays(GL_TRIANGLES, 0, 36); glfwSwapBuffers(window);
glfwPollEvents();
} glfwTerminate();
return 0;
} void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{
glViewport(0, 0, width, height);
} void process_input(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, true);
}
float cameraSpeed = 0.05f; // adjust accordingly
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

立方体顶点着色器GLSLcube.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords; out vec3 Normal;
out vec3 FragPos;
out vec2 TexCoords; uniform mat4 model;
uniform mat4 view;
uniform mat4 projection; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
FragPos = vec3(model * vec4(aPos, 1.0));
Normal = aNormal;
TexCoords = aTexCoords;
}

立方体片段着色器GLSLcube.fs.glsl

#version 330 core
struct Material {
sampler2D diffuse;
sampler2D specular;
float shininess;
};
struct Light {
vec3 position;
vec3 direction;
float cutOff;
float outerCutOff; vec3 ambient;
vec3 diffuse;
vec3 specular; // float constant;
// float linear;
// float quadratic;
};
in vec3 Normal;
in vec3 FragPos;
in vec2 TexCoords; out vec4 FragColor; uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos;
uniform Material material;
uniform Light light; void main()
{
// 环境光
// 将环境光下的材质颜色设置为漫反射材质颜色同样的值
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); // 漫反射
vec3 norm = normalize(Normal);
vec3 lightDir = normalize(lightPos - FragPos);
// vec3 lightDir = normalize(-light.direction);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords)); // 镜面光
vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords)); // 计算衰减
// float distance = length(light.position - FragPos);
// float attenuation = 1.0 / (light.constant + light.linear * distance +
// light.quadratic * (distance * distance));
// ambient *= attenuation;
// diffuse *= attenuation;
// specular *= attenuation; float theta = dot(lightDir, normalize(-light.direction)); if(theta > light.cutOff)
{
// 执行光照计算
vec3 result = ambient + diffuse + specular;
FragColor = vec4(result, 1.0);
}
else{ // 否则,使用环境光,让场景在聚光之外时不至于完全黑暗
float epsilon = light.cutOff - light.outerCutOff;
float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);
// 将不对环境光做出影响,让它总是能有一点光
diffuse *= intensity;
specular *= intensity;
vec3 result = ambient + diffuse + specular;
FragColor = vec4(result, 1.0);
}
}

着色器Shader.hpp、光源顶点着色器GLSLlight_cube.vs.glsl、光源片段着色器GLSLlight_cube.fs.glsl见:

5. 参考资料

[1]投光物 - LearnOpenGL CN (learnopengl-cn.github.io)

基于C++的OpenGL 11 之投光物的更多相关文章

  1. hibernate中基于主键映射1-1关联关系和基于外键映射1-1关联关系的不同

    基于主键映射1-1关联关系和基于外键映射1-1关联关系的不同,主要区别是在配置映射文件上会有区别 两个持久化类为Manager和Department 1:基于主键映射1-1关联关系 1)使用其他持久化 ...

  2. 基于Cocos2d-x学习OpenGL ES 2.0之多纹理

    没想到原文出了那么多错别字,实在对不起观众了.介绍opengl es 2.0的不多.相信介绍基于Cocos2d-x学习OpenGL ES 2.0之多纹理的,我是独此一家吧.~~ 子龙山人出了一个系列: ...

  3. 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)

    在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...

  4. 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)

    在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...

  5. 【游戏开发】基于VS2017的OpenGL开发环境搭建

    一.简介 最近,马三买了两本有关于“计算机图形学”的书籍,准备在工作之余鼓捣鼓捣图形学和OpenGL编程,提升自己的价值(奔着学完能涨一波工资去的).俗话说得好,“工欲善其事,必先利其器”.想学习图形 ...

  6. 1、基于MFC的OpenGL程序

    首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   工程openGLMFC 1.创建单文本文件   2.添加路径.链接 方法如之前篇章所示, 链接库为op ...

  7. 基于MFC的OpenGL程序<转>

    原贴地址:https://www.cnblogs.com/pinking/p/6180225.html 首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   ...

  8. 基于Cocos2d-x学习OpenGL ES 2.0系列——你的第一个立方体(5)

    在上篇文章中,我们介绍了VBO索引的使用,使用VBO索引可以有效地减少顶点个数,优化内存,提高程序效率. 本教程将带领大家一起走进3D--绘制一个立方体.其实画立方体本质上和画三角形没什么区别,所有的 ...

  9. 基于对话框的Opengl框架

    转自:http://blog.csdn.net/longxiaoshi/article/details/8238933 12-11-29 14:55 1198人阅读 评论(6) 收藏 举报  分类: ...

  10. 基于Cocos2d-x学习OpenGL ES 2.0系列——编写自己的shader(2)

    在上篇文章中,我给大家介绍了如何在Cocos2d-x里面绘制一个三角形,当时我们使用的是Cocos2d-x引擎自带的shader和一些辅助函数.在本文中,我将演示一下如何编写自己的shader,同时, ...

随机推荐

  1. 【大数据面试】Flink 03-窗口、时间语义和水印、ProcessFunction底层API

    三.窗口 1.窗口的介绍 (1)含义 将无限的流式数据切割为有限块处理,以便于聚合等操作 (2)图解 2.窗口的分类 (1)按性质分 Flink 支持三种划分窗口的方式,time.count和会话窗口 ...

  2. webflux延迟队列逻辑更改过程记录

    title : webflux延迟队列逻辑更改过程记录 author : simonLee date : 2022/11/22 10:26 目录 webflux延迟队列逻辑更改过程记录 一.问题背景 ...

  3. Vue 打包报错UnhandledPromiseRejectionWarning: postcss-svgo: Error in parsing SVG

    解决方案 检查下自己最新写的css 或者最新引入的样式库,把里面的base64的url替换成双引号形式的 PS:我这报错是因为引入的weui.min.css里面的loading样式的`backgrou ...

  4. 《HTTP权威指南》– 10.安全HTTP

    HTTPS的概念 HTTPS 是最流行的HTTP安全模式,由网景公司首创,所有主流浏览器和服务器都支持此协议.HTTPS方案 的URL以 https:// 开头,使用 HTTPS 时,所有的HTTP请 ...

  5. python 之匿名函数(lambda)

    什么是匿名函数?匿名函数就是不用def关键字,使用lambda关键字定义的一个函数.匿名函数简约而不简单. 匿名函数的格式: lambda[ paramters1, paramters2 , .... ...

  6. .net core-利用PdfSharpCore 操作PDF实例

    前序 使用PdfSharpCore请注意使用XGraphics基类,与System.Drawing 的Graphics类似,XGraphics 提供XColor(颜色).XPen(画笔).XBrush ...

  7. C/C++语言 MD5例子

    之前研究了一下在C中进行MD5加密,由于找了很久没有找到现成的库文件,所以所幸自己去写了一下.个人感觉C的便捷性没有Python好的原因就是这里. 下面是我写的一个例子. mian.cpp: 点击查看 ...

  8. [python] 基于blind-watermark库添加图片盲水印

    blind-watermark是一个能够给图片添加/解析基于频域的数字盲水印的Python库.图像水印image watermark是指在图片里添加文本或图形,以标记图片的来源.但是图像水印会破坏原图 ...

  9. 深入理解IOC并自己实现IOC容器

    title: 深入理解IOC并自己实现IOC容器 categories: 后端 tags: - .NET 背景介绍 平时开发的时候我们经常会写出这种代码: var optionA=new A(...) ...

  10. MAC上好用的解压工具

    macOS:11.1 想在 macOS 上打开一个压缩文件,有原生的归档实用工具或 BetterZip.Keka.The Unarchiver 等诸多选择.最近,又有国内独立开发者为我们带来了一款新作 ...