功能

能在线性时间内判断字符串\(A[1~N]\)是否为字符串\(B[1~M]\)的子串,并求出字符串\(A\)在字符串\(B\)中各次出现的位置。

实现

1.对字符串\(A\)进行自我“匹配”,求出一个数组\(next\),其中\(next[i]\)表示“\(A\)中以\(i\)结尾的非前缀子串”与“\(A\)的前缀”能够匹配的最长长度。特别地,当不存在这样的\(j\)时,令\(next[i]=0\).由于\(next\)的对象是非前缀子串,所以\(next[1]=0\);

概念解释:字符串的前缀是指字符串的任意首部。比如字符串“\(abbc\)”的前缀有“\(a\)”,“\(ab\)”,“\(abb\)”,“\(abbc\)”。同样,字符串的任意尾部是字符串的后缀,“\(abbc\)”的后缀有“\(c\)”,“\(bc\)”,“\(bbc\)”,“\(abbc\)”。



\(next[i]=max{j},其中j<i并且A[i-j+1~i]=A[1~j]\)

2.对字符串\(A\)与\(B\)进行匹配,求出一个数组\(f\),其中\(f[i]\)表示“\(B\)中以\(i\)结尾的子串”与“\(A\)的前缀”能够匹配的最长长度。



\(f[i]=max{j},其中j<=i并且B[i-j+1~i]=A[1~j]\)

代码

KMP算法\(next\)数组的求法

1.初始化\(next[1]=j=0\),假设\(next[1~i-1]\)已求出,下面求解\(next[i]\).

2.不断尝试扩展匹配长度\(j\),如果扩展失败(下一个字符不相等),令\(j\)变为\(next[j]\),直至\(j\)为\(0\)(应该从头开始匹配)。

3.如果能够扩展成功,匹配长度\(j\)就增加\(1\).\(next[i]\)的值就是\(j\).

next[1]=0;
for(int i=2,j=0;i<=n;i++)
{
while(j>0&&&a[i]!=a[j+1]) j=next[j];
if(a[i]==a[j+1]) j++;
next[i]=j;
}

KMP算法\(f\)数组的求法

for(int i=1,j=0;i<=m;i++)
{
while(j>0&&(j==n||b[i]!=a[j+1])) j=next[j];
if(b[i]==a[j+1]) j++;
f[i]=j;
//if(f[i]==n),此时就是A在B中的某一次出现
}

例题

例题1:P3375 【模板】KMP字符串匹配

这道题完完全全就是对上述两个代码块的直接使用。

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 1000010
#define M 1000010
char p[N],s[M];//p模式串 s主串
int nex[N],f[N];
int ans;
using namespace std;
int main()
{
cin>>s+1>>p+1;
int lp=strlen(p+1);
int ls=strlen(s+1);
for(int i=2,j=0;i<=lp;i++)
{
while(j>0&&p[i]!=p[j+1]) j=nex[j];
if(p[i]==p[j+1]) j++;
nex[i]=j;
}
for(int i=1,j=0;i<=ls;i++)
{
while(j&&(j==lp||s[i]!=p[j+1])) j=nex[j];
if(s[i]==p[j+1]) j++;
f[i]=j;
if(f[i]==lp)
{
ans=i-lp+1;
printf("%d\n",ans);
}
}
for(int i=1;i<=lp;i++) printf("%d ",nex[i]);
return 0;
}

例题2







这道题引入了一个新概念:循环同构。

其实,判断两个串是否循环同构也可以利用上述的KMP算法。比如欲判断字符串\(A\)和\(B\)是否循环同构,我们只需要新定义一个字符串\(C\)为重复两遍的\(A\),就是说,若\(A=aab\),则\(C=aabaab\).然后用KMP判断\(C\)中是否有\(B\),若有,则\(A\)和\(B\)循环同构,反之则不循环同构。

具体到这道题,我们可以枚举所有因数,然后按因数分段,再用上述方法判断。一旦出现两段之间非循环同构就break,这样能节省不少时间。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=5e6+10;
int t,n;
char a[N];
int nex[N],b[N],f[N];
void kmp(int x)
{
nex[1]=0;
for(int i=2,j=0;i<=x;i++)
{
while(j>0&&a[i]!=a[j+1]) j=nex[j];
if(a[i]==a[j+1]) j++;
nex[i]=j;
}
}
bool judge()
{
for(int i=2;i<n;i++)
{
if(n%i==0)
{
int x=i,p=1,w=n/x;
bool kx=1;
kmp(x);
for(int j=1;j<=w-1;j++)
{
for(int k=x*j+1;k<=x*(j+1);k++)
b[k-x*j]=b[k+x-x*j]=a[k];
for(int k=1,w=0;k<=x*2;k++)
{
while(w>0&&(w==x||b[k]!=a[w+1])) w=nex[w];
if(b[k]==a[w+1]) w++;
f[k]=w;
if(f[k]==x)
{
kx=1;
p++;
break;
}
kx=0;
}
if(!kx) break;
}
if(p==w) return 1;
}
}
for(int j=1;j<n;j++)
if(a[j]!=a[j+1])
return 0;
return 1;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%s",&n,a+1);
if(n==1)
{
puts("No");
continue;
}
if(judge()) puts("Yes");
else puts("No");
}
return 0;
}

KMP模式匹配 学习笔记的更多相关文章

  1. KMP字符串模式匹配学习笔记

    KMP算法实验 1.编程计算模式串(子串)的next值.2.利用KMP算法在主串中找到模式串的位置. 参考代码:---------int getNexlVal( char * s,  int j)// ...

  2. [KMP]【学习笔记】

    Oulipo Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 36916   Accepted: 14904 Descript ...

  3. HDU 4333 Revolving Digits [扩展KMP]【学习笔记】

    题意:给一个数字,每一次把它的最后一位拿到最前面,一直那样下去,分别求形成的数字小于,等于和大于原来数的个数. SAM乱搞失败 当然要先变SS了 然后考虑每个后缀前长为n个字符,把它跟S比较就行了 如 ...

  4. 串的应用与kmp算法讲解--学习笔记

    串的应用与kmp算法讲解 1. 写作目的 平时学习总结的学习笔记,方便自己理解加深印象.同时希望可以帮到正在学习这方面知识的同学,可以相互学习.新手上路请多关照,如果问题还请不吝赐教. 2. 串的逻辑 ...

  5. 「学习笔记」字符串基础:Hash,KMP与Trie

    「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...

  6. 【学习笔记】oracle 比较运算符,逻辑运算符,特殊运算符,判断空值,大小写敏感

    比较运算符:> 大于,< 小于 >= 大于等于,<= 小于等于 = 等于,!=,<>,^= 不等于 逻辑运算符运算的优先顺序:NOT > AND > O ...

  7. 两千行PHP学习笔记

    亲们,如约而至的PHP笔记来啦~绝对干货! 以下为我以前学PHP时做的笔记,时不时的也会添加一些基础知识点进去,有时还翻出来查查. MySQL笔记:一千行MySQL学习笔记http://www.cnb ...

  8. awk 学习笔记

    awk的语法有两种形式 awk [options] 'script' var=value file(s) awk [options] -f scriptfile var=value file(s) 选 ...

  9. PHP学习笔记 - 进阶篇(5)

    PHP学习笔记 - 进阶篇(5) 正则表达式 什么叫正则表达式 正则表达式是对字符串进行操作的一种逻辑公式,就是用一些特定的字符组合成一个规则字符串,称之为正则匹配模式. $p = '/apple/' ...

随机推荐

  1. C++ 实现可变参数的三个方法

    有时我们无法提前预知应该向函数传递几个实参.例如,我们想要编写代码输出程序产生的错误信息,此时最好用同一个函数实现该项功能,以便对所有错误的处理能够整齐划一.然而,错误信息的种类不同,所以调用错误输出 ...

  2. 使用Python3将word文档和pdf电子书进行格式互转(兼容Windows/Linux)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_96 一些重要文档格式之间的互转在目前显得尤为重要,pdf作为通用格式在现在各个平台上兼容性是最好的,所以写python脚本将这些w ...

  3. springboot整合xxl-job分布式定时任务【图文完整版】

    一.前言 定时任务有很多种,有一些大的框架也有一些简单的实现. 比如常见的: JDK的Timer和TimerTask Quartz异步任务调度框架 分布式定时任务XXL-JOB Spring Task ...

  4. 恭喜社区喜提三枚新 Committer!

    点击上方 蓝字关注我们 ✎ 编 者 按 Apache DolphinScheduler 社区最近又迎来三位新的 Committer,凭借对社区的高质量贡献,社区很荣幸地邀请他们加入 Committer ...

  5. Windows下安装新硬盘

    首先,插上一个硬盘然后开机,会发现"我的电脑/此电脑"里面并没有这个硬盘,这是因为此时硬盘还没初始化和分区,分完区后每个分区会被作为一个逻辑盘显示在里面.那么接下来就是过程. Wi ...

  6. LuoguP5024 保卫王国(动态DP,LCT)

    最小权覆盖集 = 全集 - 最大权独立集 强制取点.不取点可以使用把权值改成正无穷或负无穷实现 接下来就是经典的"动态最大权独立集"了 O(nlogn). 这不是我说的,是immo ...

  7. Excel 文本函数(一):LEFT、RIGHT 和 MID

    文本函数 LEFT.RIGHT 以及 MID 是非常常用的,它们用于截取文本字符串. LEFT(text, [num_chars]) 是从文本字符串的左边开始截取:RIGHT(text, [num_c ...

  8. SpringBoot RabbitMQ 注解版 基本概念与基本案例

    前言 人间清醒 目录 前言 Windows安装RabbitMQ 环境工具下载 Erlang环境安装 RabbitMQ安装 RabbitMQ Web管理端安裝 RabbitMQ新增超级管理员 Rabbi ...

  9. WPF开发快速入门【7】WPF的拖放功能(Drag and Drop)

    概述 本文描述WPF的拖放功能(Drag and Drop). 拖放功能涉及到两个功能,一个就是拖,一个是放.拖放可以发生在两个控件之间,也可以在一个控件自己内部拖放.假设界面上有两个控件,一个Tre ...

  10. 自定义View3-水波纹扩散(仿支付宝咻一咻)实现代码、思想

    PS:自定义view篇-水波纹实现 效果:水波纹扩散 场景:雷达.按钮点击效果.搜索等 实现:先上效果图,之前记得支付宝有一个咻一咻,当时就是水波纹效果,实现起来一共两步,第一画内圆,第二画多个外圆, ...