本博客翻译了 这篇文章,包含很实用的 读论文的方法论。

读论文的四个 layers

在读论文之前,要首先搞清楚,自己读论文的目的是什么,或者 希望读到什么程度。

下表列出了常见的读论文目的,以及相应的理解程度 layers(1 最浅 4 最深):

目的 layer 目的 layer
了解领域背景 1 评估是否引用论文(相同主题,方法非常不同) 1
评估自己对该领域是否感兴趣 1 评估是否引用论文(相同主题,方法有些不同) 2
关键词搜寻 1 思考自己如何引用该论文(相同主题,方法有些相似) 3
课堂演示(5~10 min) 2 思考自己如何引用该论文(相同主题,方法非常相似) 4
课堂演示(>10 min) 3 复现 4
review 3

然后,分别介绍各个 layer 所需的理解程度 + 阅读论文方法。

layer 1:知道 main idea

如果只想 对该领域产生一些感性了解、看看自己是否感兴趣,或者 看看是否引用这篇论文(方法非常不同),读到 layer 1 就足够了。

  • 需要回答以下问题:

    1. 【问题定义】作者试图解决 / 研究什么类型的问题 / 现象?
    2. 【问题重要性】读者为什么要关心这个问题 / 现象?
    3. 【novelty】proposed method 与 previous works 有什么不同?
    4. 【为何胜出】比 previous works 好在哪里?(比如 性能更好 / 更 general / 更快)
    5. 【论文在文献树上的位置】这是什么类型的方法?(通常有几种方法可以解决相同的问题)
    6. 【实际应用】这项工作有哪些应用?
  • 需要阅读:
    • abstract + intro + conclusion,获得全文概览。
    • 图、表,有助于快速获取感性认知。
    • related work,有助于理解 这篇论文在整个文献树上的位置。
    • 如果搞 engineering,还需要看实验结果(小心 demoware)。

layer 2:知道 proposed method 的 structure

(首先确保已经做完 layer 1)

如果需要做个 5~10min 的 pre,或者 看看是否引用这篇论文(方法还是有些不同的),需要读到 layer 2。

  • 需要做到以下内容:

    1. 【画出整个 method 的框图】,每一模块的 目的功能 + 输入输出。
    2. 通常,大多数模块我们都不关心(和论文主旨无关 / 自己不感兴趣),仅关心个别模块。
  • 需要阅读:
    • 图、表,原文直接给出 structure 图最好。
    • method(以及 abstract intro 等),标注不清楚的地方(layer 3 再去 check),注意不要陷到细节里。

layer 3:比较重要的细节

(首先确保已经做完 layer 1 2)

如果需要做个超过 10min 的 pre,或者 决定如何引用这篇论文(方法有些类似),需要读到 layer 3。

▷▷▷ 是时候深入研究细节了!

  • 需要做到以下内容:

    • 密切关注作者的 main contribution,并确保理解 他们所谈论的每一步。

      • 一个有用的实践,是想象一个给定的输入,模拟 proposed method 如何处理它。
      • 例如,对于 A* 算法,想象一个有起点和目标的迷宫环境,并画出 A* 算法在搜索时会扩展的单元格(不需要全部画出,足以获得直觉)。甚至可以想象该方法的一个困难案例(例如 A* 的死胡同),并考虑 A* 如何应对它。
    • 如果在做 engineering,也请仔细 check 实验结果:
      • 【result & conclusion 匹配吗】结果是否证明了 该方法的合理性?
      • 【有无遗漏的实验】是否有 应该测试但没测试的 案例 / 场景?
      • 【performance & complexity 的权衡】(对于某些可量化的指标),proposed method 相比于其他方法的优势,能否使人接受 它新引入的 complexity?
      • 【不 work 的场景】方法在哪些情况下失败?
  • 需要阅读:
    • 追踪 有关 main method 的、自己不熟悉的引文。

      • 我们应该遍历关键的引文,并至少通读一层的深度;但如果真的很重要,那么可能读两层。
    • 如果在做 engineering,实验结果部分。

layer 4:其他细节

(首先确保已经做完 layer 1 2 3)

如果需要 决定如何引用这篇论文(方法非常相似,正在寻找它与我们的细微差别 ),或者 打算复现论文,或许需要读到 layer 4。

作者并不推荐读的那么细。

  • 需要做到以下内容:

    • 查看 structure 框图中,不是 main contribution 的所有其他模块,并研究如何实现它们。
    • 或许我们还在寻找 实现过程的细微细节,这些 tricks 或许能改进 performance。
  • 需要阅读:
    • 不幸的是,在这一点上,原文作者能给出的一般性建议很少,除了 ① 理解要彻底,② 如果想实现这个方法,我们可能会在一开始就出错。(别担心,出错是自然的,因为论文在描述 implementation 时,不可避免会遗漏一些东西。)

往后退一步

如果想在它的基础上 继续前进一步,则在视野上 需要往后退一步,更加宏观 更加整体。

  • 询问以下关键问题:

    • 论文的优点是什么,即 它在哪些方面做得很好。

      • 【论文合理性】实验结果真的能证明 他们 claim 的结论吗?
    • 论文做了哪些假设?
      • 【论文合理性】假设可能会限制 该方法对某些重要场景的适用性,甚至不适用于实际情况。
      • 【论文完备性】有时候假设很清楚,但通常也有一些隐藏的假设。发现隐性假设的一个好方法是,试着想一个 “打破” 该方法的例子。
      • 【进一步改进】可以通过 考虑拿掉某些假设的情况,来做下一步的改进。
    • 如何改进这项工作?(可能是一些冒出来的想法)
      • 某些 “未来展望” 章节的内容,很可能是事后诸葛亮,并不值得做。

逐层阅读 research paper:Dmitry Berenson 的方法论的更多相关文章

  1. 如何写出优秀的研究论文 Chapter 1. How to Write an A+ Research Paper

    This Chapter outlines the logical steps to writing a good research paper. To achieve supreme excelle ...

  2. How to Read an Engineering Research Paper

    How to Read an Engineering Research Paper William G. Griswold Department of Computer Science & E ...

  3. 写essay和research paper必用的17个网站

    1.http://scholar.google.com/ 虽然还是Beta版,但个人已觉得现在已经是很好很强大了,Google学术搜索滤掉了普通搜索结果中大量的垃圾信息,排列出文章的不同版本以及被其它 ...

  4. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  5. 译文 - Recommender Systems: Issues, Challenges, and Research Opportunities

    REF: 原文 Recommender Systems: Issues, Challenges, and Research Opportunities Shah Khusro, Zafar Ali a ...

  6. 【文献阅读】Densely Connected Convolutional Networks-best paper-CVPR-2017

    Densely Connected Convolutional Networks,CVPR-2017-best paper之一(共两篇,另外一篇是apple关于GAN的paper),早在去年八月 De ...

  7. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  8. Awesome Deep Vision

    Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awes ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. mysql复制表的两种方式

    mysql复制表的两种方式. 第一.只复制表结构到新表 create table 新表 select * from 旧表 where 1=2 或者 create table 新表 like 旧表 第二 ...

  2. python-将print内容保存到文件

    通过sys.stdout得到print输出的内容,再进行保存 import sys class Logger(object): def __init__(self, file_path: str = ...

  3. 细说GaussDB(DWS)复杂多样的资源负载管理手段

    摘要:对于如此多的管控功能,管控起来实际的效果到底如何,本篇文章就基于当前最新版本,进行效果实测,并进行一定的分析说明. 本文分享自华为云社区<GaussDB(DWS) 资源负载管理:并发管控以 ...

  4. ACM组合计数入门

    1 排列组合 1.1 排列 \[A_n^m=n(n-1)(n-2)\cdots(n-m+1)=\frac{n!}{(n-m)!} \] 定义:从 n 个中选择 m 个组成有序数列,其中不同数列的数量. ...

  5. Collection子接口:Set接口

    1.Set 存储的数据特点:无序的.不可重复的元素具体的:以HashSet为例说明: 1. 无序性:不等于随机性.存储的数据在底层数组中并非照数组索引的顺序添加,而是根据数据的哈希值决定的. 2. 不 ...

  6. JetBrains系列IDE创建文件模板

    #coding:utf-8 ''' @version: python3.6 @author: '$USER' @license: Apache Licence @contact: steinven@q ...

  7. testNG框架,使用@BeforeClass标注的代码,执行失败不抛出异常,只提示test ignore的解决方法

    郁闷了好久的一个问题,排错调试的时候是真滴麻烦... Google一圈,发现是testNG的Bug,升级testNG>=6.9.5,就能解决.

  8. 近期碰到的一些面试题--WPF、C#、数据库

    最近想换工作的念头特别强烈,面了几家公司没有拿到满意的offer,心仪的公司面完锁HC,有点无奈,感觉今年有点卷,把碰到过的面试题总结下. WPF相关: 1.定义依赖属性需要注意哪些地方? (1)依赖 ...

  9. Linux 任务计划管理

    在某个时间点执行一次任务 at工具 作用:用于执行一次性任务,需要指定执行的时间. at工具来源于at软件包. 依赖与atd服务,需要启动才能实现at任务.#通过这个守护进程见监控at的相关内容 #选 ...

  10. vue3代码编写

    vue3代码编写 团队内的vue3已经升级一年,在这一年中vue也在不停的更新,为了最大化组合式api带来的优势,便需要合理规范代码的编写方式- 1.从vue2到vue3 vue2组件采用配置式API ...