形式: torch.max(input) → Tensor

返回输入tensor中所有元素的最大值:

a = torch.randn(1, 3)
>>0.4729 -0.2266 -0.2085
torch.max(a) #也可以写成a.max()
>>0.4729
形式: torch.max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor) 按维度dim 返回最大值,并且返回索引。 torch.max(a,0)返回每一列中最大值的那个元素,且返回索引(返回最大元素在这一列的行索引)。返回的最大值和索引各是一个tensor,一起构成元组(Tensor, LongTensor) a = torch.randn(3,3)
>>
0.2252 -0.0901 0.5663
-0.4694 0.8073 1.3596
0.1073 -0.7757 -0.8649 torch.max(a,0)
>>
(
0.2252
0.8073
1.3596
[torch.FloatTensor of size 3]
,
0
1
1
[torch.LongTensor of size 3]
torch.max(a,1)返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引) a = torch.randn(3,3)
>>
0.2252 -0.0901 0.5663
-0.4694 0.8073 1.3596
0.1073 -0.7757 -0.8649 torch.max(a,1)
>>
(
0.5663
1.3596
0.1073
[torch.FloatTensor of size 3]
,
2
2
0
[torch.LongTensor of size 3]
)
拓展: torch.max()[0], 只返回最大值的每个数 troch.max()[1], 只返回最大值的每个索引 torch.max()[1].data 只返回variable中的数据部分(去掉Variable containing:) torch.max()[1].data.numpy() 把数据转化成numpy ndarry torch.max()[1].data.numpy().squeeze() 把数据条目中维度为1 的删除掉
torch.argmax 函数详解
1. 函数介绍
2. 实例演示
1. 函数介绍
torch.argmax(input, dim=None, keepdim=False) 返回指定维度最大值的序号
dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。
dim的不同值表示不同维度。特别的在dim=0表示二维中的列,dim=1在二维矩阵中表示行。广泛的来说,我们不管一个矩阵是几维的,比如一个矩阵维度如下:(d0,d1,…,dn−1) ,那么dim=0就表示对应到d0 也就是第一个维度,dim=1表示对应到也就是第二个维度,依次类推。
知道dim的值是什么意思还不行,还要知道函数中这个dim给出来会发生什么?
举例说明: 例子1:torch.argmax()函数中dim表示该维度会消失。 这个消失是什么意思? 官方英文解释是:dim (int) – the dimension to reduce. 我们知道argmax就是得到最大值的序号索引,对于一个维度为(d0,d1) 的矩阵来说,我们想要求每一行中最大数的在该行中的列号,最后我们得到的就是一个维度为(d0,1) 的一维矩阵。这时候,列这一维度就要消失了。 因此,我们想要求每一行最大的列标号,我们就要指定dim=1,表示我们不要列了,保留行的size就可以了。 假如我们想求每一列的最大行标,就可以指定dim=0,表示我们不要行了,求出每一列的最大值的下标,最后得到(1,d1)的一维矩阵。 2. 实例演示
实例1: import torch
a = torch.tensor(
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
])
b = torch.argmax(a, dim=0)
print(b)
print(a.shape) 输出结果: tensor([1, 2, 0, 1])
torch.Size([3, 4]) dim=0的维度为3,即在那3组数据中作比较,求得是每一列中的最大行标,因此为[1,2,0,4]。 实例2: import torch
a = torch.tensor([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
], [
[-1, 7, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]])
b = torch.argmax(a, dim=0)
print(b)
print(a.shape) """
tensor([[0, 1, 0, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])
torch.Size([2, 3, 4])""" # dim=0,即将第一个维度消除,也就是将两个[3*4]矩阵只保留一个,因此要在两组中作比较,即将上下两个[3*4]的矩阵分别在对应的位置上比较大小 b = torch.argmax(a, dim=1)
"""
tensor([[1, 2, 0, 1],
[1, 2, 2, 1]])
torch.Size([2, 3, 4])
"""
# dim=1,即将第二个维度消除,这么理解:矩阵维度变为[2*4];
"""
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1];
纵向压缩成一维,因此变为[1,2,0,1];同理得到[1,2,2,1];
"""
b = torch.argmax(a,dim=2)
"""
tensor([[2, 0, 1],
[1, 0, 2]])
"""
# dim=2,即将第三个维度消除,这么理解:矩阵维度变为[2*3]
"""
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1];
横向压缩成一维
[2,0,1],同理得到下面的"""

torch.max与torch.argmax的更多相关文章

  1. torch.max

    torch.max() torch.max(input) -> Tensor Explation: ​ Returns the maximum value of all elements in ...

  2. 从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系

    从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系 relu多种实现之间的关系 relu 函数在 pytorch 中总共有 3 次出现: torc ...

  3. 【Pytorch】关于torch.matmul和torch.bmm的输出tensor数值不一致问题

    发现 对于torch.matmul和torch.bmm,都能实现对于batch的矩阵乘法: a = torch.rand((2,3,10))b = torch.rand((2,2,10))### ma ...

  4. [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList

    1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...

  5. Pytorch本人疑问(1) torch.nn和torch.nn.functional之间的区别

    在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看 ...

  6. torch.rand、torch.randn、torch.normal、torch.linespace

    torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) # ...

  7. torch.cat()和torch.stack()

    torch.cat() 和 torch.stack()略有不同torch.cat(tensors,dim=0,out=None)→ Tensortorch.cat()对tensors沿指定维度拼接,但 ...

  8. PyTorch - torch.eq、torch.ne、torch.gt、torch.lt、torch.ge、torch.le

    PyTorch - torch.eq.torch.ne.torch.gt.torch.lt.torch.ge.torch.le 参考:https://flyfish.blog.csdn.net/art ...

  9. torch.sort 和 torch.argsort

    定义 torch.sort(input,dim,descending) torch.argsort(input,dim,descending) 用法 torch.sort:对输入数据排序,返回两个值, ...

随机推荐

  1. 【Python】和【Jupyter notebook】的正确安装方式?

    学了那么久Python,你的Python安装方式正确吗?今天给你看看什么才是Python正确的安装方式,教程放在下面了,喜欢的记得点赞. Python安装 Python解答Q群:660193417## ...

  2. File类的概述和File类的静态成员变量

    File类概述:java.io.File类 文件和目录路径名的抽象表示形式 java把电脑中的文件和文件夹(目录)封账为了一个File类,我们可以使用File类对文件和文件夹进行操作 默认情况下,ja ...

  3. MySQL-过滤数据(WHERE语句)

    1.使用WHERE子句 在SELECT语句中,数据根据WHERE子句中指定的搜索条件进行过滤.WHERE子句在表名( FROM子句)之后给出,如下所示: SELECT prod_name,prod_p ...

  4. NC20566 [SCOI2010]游戏

    题目链接 题目 题目描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属 ...

  5. OptaPlanner 发展方向与问题

    ​ 最近一段时间,因为忙于[易排(EasyPlan)规划平台]的设计与开发工作,平台的一些功能设计,需要对OptaPlanner的各种特性作更深入的研究与应用.慢慢发现,OptaPlanner进入8. ...

  6. js基础学习-数组

    let arr1 = [ {name: 1} ] let arr2 = [ {age: 23} ] let ages = [11, 22, 23] let newArr = arr1.concat(a ...

  7. HelloWorld入门程序

    程序开发步骤说明 开发环境搭建完成后我们就可以开发第一个java程序了 java程序开发三步骤:编写.编译.运行 编写Java源程序 1.在本地盘目录下新建文本文件,完整的文件名修改为HelloWor ...

  8. flex这些问题应该被理解

    flex三连问,帮助我们更好的理解布局利器 问题: flex的值 auto, none, 0, 1, initial分别是什么?有什么作用?有什么表现? flex-basis和width的区别?单值f ...

  9. 简短截说阐述redis中事务的使用

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_127 我们知道,在关系型数据库中,比如mysql,如果要使用事务,首先向数据库服务器发送 BEGIN ,然后执行各个相互一致的写操 ...

  10. Apache Hudi vs Delta Lake:透明TPC-DS Lakehouse性能基准

    1. 介绍 最近几周,人们对比较 Hudi.Delta 和 Iceberg 的表现越来越感兴趣. 我们认为社区应该得到更透明和可重复的分析. 我们想就如何执行和呈现这些基准.它们带来什么价值以及我们应 ...