[AGC057D] Sum Avoidance
本篇题解大部分内容来自这篇文章
首先题意翻译:
给定一个正整数 \(S\) ,称一个正整数集合 \(A\) 是好的,当且仅当它满足以下条件:
\(A\) 中元素在 \((0,S)\) 之间
不能用 \(A\) 中元素多次相加得到 \(S\)
考虑所有好的集合中元素数量最大且字典序最小的集合 \(A\) ,多次询问,求集合 \(A\) 从小到大排序后的第 \(k\) 项,或集合大小小于 \(k\)
$ T \le 1000 , S \le 10^{18} $
解法
这什么神仙题啊光是理解题解就好困难啊
先考虑性质2:
首先容易发现 \(i,S-i\) 只能在集合中存在一个,若 \(S\) 为偶数则 \(\frac{S}{2}\) 也不能存在于集合中,所以集合的大小小于等于\(\left\lfloor\dfrac{S-1}{2}\right\rfloor\)。
其次,把所有大于 \(\left\lfloor\dfrac{S}{2}\right\rfloor\) 的整数取进集合必然满足条件,所以最大集合的大小一定为\(\left\lfloor\dfrac{S-1}{2}\right\rfloor\)。
且若要满足集合大小最大,对于 \(i< \dfrac{S}{2}\),\(n-i\) 和 \(i\) 一定有一个在集合中。
我们设所有集合 \(A\) 中 \(< \dfrac{S}{2}\)的元素构成集合 \(B\),显然 \(B\) 是 \(A\) 的子集,且确定 \(B\) 即可确定 \(A\)。
则 \(B\) 有以下性质:
\]
原因是如果 \(a+b \notin B\),则 \(n-(a+b)\),一定在 \(A\)中,那么 \(a,b,n-(a+b)\) 同时在集合 \(A\) 中,显然不满足条件。
考虑满足该性质的集合 \(B\) 及对应的 \(A\),当它不合法,即 \(A\) 中的数多次相加能拼成 \(S\) 时,若拼成 \(S\) 的数中有一个大于等于 \(\dfrac{S}{2}\)(即在集合 \(A\) 但不在集合 \(B\) 中) ,则这种情况必定不满足性质1,所以我们只需要考虑集合 \(B\) 是否合法即可。
那么接下来就是构造了,由于我们要构造字典序最小的 \(A\) ,所以只需从小往大依次枚举每个数,尝试贪心的将其加入 \(B\) ,最后得到的 \(B\) 及其对应的 \(A\) 就是我们所需要的集合 \(A\) 了。
加入数时有两种情况:
1.该数能被已经在 \(B\) 中的数组合出,那么这个数必须加,显然加入它之后集合仍旧合法。
2.当非第一种情况时,若加入该数不会使集合 \(B\) 不合法,加入该数。
我们设第一个加入集合 \(B\) 的数为 \(d\) ,容易发现,\(d\) 一定是最小的与 \(S\) 互质的数,并且在此之后每当我们用第 \(2\) 种方式加入新数时,该数一定与已经在集合中的所有数模 \(d\) 不同余(同余的话可以由已经在集合中的同余的数和若干个 \(d\) 组合出)。也就是说,以第二种方式加入的数最多只有 \(d\) 个。
接下来就来到了同余最短路的相关部分,考虑对于每个 \(i\in{0,1,···,d-1}\) 记录一个 \(f_i\) 表示已经在 \(B\) 的数可以构造出的 \(\equiv i (\mod d )\)的最小值。
显然,\(f\) 不会被第一种情况加入的数影响,且最后由 \(f\) 可以得到整个 \(B\) 集合(下文讲具体方法)。
先考虑以第二种方式加入一个数 \(v \equiv x (\mod d)\),首先一定有 \(f_x>v\) (否则就是以第一种方式加入了),可以通过枚举加入的 \(v\) 用了多少次更新 \(f\) 数组,即:
\]
一个数\(v\)能被加入当且仅当 \(f_x>v\) 且加入后 \(f_{S \mod d}>S\)。我们不妨枚举 \(x\),容易发现,对于每个 \(x\) ,加入的合法的 \(v\) 有其下界 \(dn\) ,大于等于 \(dn\) 且 \(\equiv x(\mod d)\) 且小于 \(f_x\) 的数均可加入,从而可以得到当前 \(x\) 下第一个能加入的数。(当然也可能根本不存在能加入的数)
于是我们可以对每一个 \(x\) 找到其能加的数,取其中最小的就是下一个能加的数,重复至多 \(d\) 次即可得到最终的 \(f\) 数组。
接下来就可以还原 \(B\) 了,若一个数 \(t\in B\),当且仅当 \(t < \frac{S}{2}\) 且 \(t\ge f_{t \mod d}\)。
此时容易\(O(d)\)求得 \(B\) 集合内小于等于某个数的元素个数,于是可以二分求得最终答案。复杂度为 \(O(d \log S)\),若答案\(> \frac{S}{2}\),也可以反向类似二分。
考虑 \(d\) 的范围,容易发现 \(d\) 在 \(10^{18}\) 次以内最大为 \(43\) (\(lcm(1,2,···,43)\geq 10^{18}\))。而事实上,\(d=O(\log S)\)
点击查看代码
#include <bits/stdc++.h>
#define N 50
#define M 2000010
#define pii pair<int,int>
#define mkp make_pair
#define pb push_back
#define fi first
#define se second
#define int long long
//#define MOD
#define INF 1061109567
#define int_edge int to[M],nxt[M],head[N],cnt=0;
using namespace std;
int S,k,d,f[N],in[N];
//int_edge;void add_edge(int x,int y ){to[++cnt]=y;nxt[cnt]=head[x];head[x]=cnt;}
//int_edge;int val[M];void add_edge(int x,int y,int z){to[++cnt]=y;val[cnt]=z;nxt[cnt]=head[x];head[x]=cnt;}
int check(int nw){
int tmp=0;
for(int i=0;i<d;i++)
if(nw>=f[i])tmp+=(nw-f[i])/d+1;
return tmp;
}
queue<int>q;
void spfa(int nw){
for(int i=0;i<d;i++)q.push(i),in[i]=1;
while(!q.empty()){
int u=q.front(),v=(u+nw)%d;q.pop();in[u]=0;
if(f[v]>f[u]+nw){f[v]=f[u]+nw;if(!in[v])q.push(v),in[v]=1;}
}
}
int solve(){
scanf("%lld %lld",&S,&k);
if(k>(S-1)/2)return -1;
if(S==3)return 2;
if(S==4)return 3;
if(S==6)return k+3;//d>=S/2
d=1;while(S%d==0)d++;
for(int i=1;i<d;i++)f[i]=1e18;
while(1){
int v=1e18;
for(int x=1;x<d;x++){//枚举x,容易发现x肯定不是0
int dn=0;
for(int k=1;k<d;k++){//枚举k,容易发现k取0肯定也不优
int lst=(S-x*k+d*d)%d;//加上d*d用于防负数
dn=max(dn,(S-f[lst])/k+1);
}
if((dn+d-x)%d)dn+=d-(dn+d-x)%d;//确保算出来的下界mod d = x
if(dn<f[x]&&dn<v)v=dn;
}
if(v>=S/2)break;
spfa(v);//更新f
}
int l=1,r=S/2,ans=-1;
while(l<=r){
int mid=(l+r)/2;
if(check(mid)>=k+1)ans=mid,r=mid-1;//注意此处由于算入了0所以要与k+1相比
else l=mid+1;
}
if(ans!=-1)return ans;
l=1,r=S/2,k=(S-1)/2+1-k;
while(l<=r){
int mid=(l+r)/2;
if(mid-check(mid)+2>=k+1)ans=mid,r=mid-1;//同样是由于算0
else l=mid+1;
}
return S-ans;
}
signed main()
{
int T;scanf("%lld",&T);
while(T--)printf("%lld\n",solve());
return 0;
}
后记:这个题折磨了我半个下午加半个晚上,不过也算是迄今为止做过的最难的题之一了,还是很有收获的。以及我真的很想吐槽一下,我函数里重复定义了 \(d\) 调了快1个小时
[AGC057D] Sum Avoidance的更多相关文章
- LeetCode - Two Sum
Two Sum 題目連結 官網題目說明: 解法: 從給定的一組值內找出第一組兩數相加剛好等於給定的目標值,暴力解很簡單(只會這樣= =),兩個迴圈,只要找到相加的值就跳出. /// <summa ...
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 112 - Path Sum
题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- BZOJ 3944 Sum
题目链接:Sum 嗯--不要在意--我发这篇博客只是为了保存一下杜教筛的板子的-- 你说你不会杜教筛?有一篇博客写的很好,看完应该就会了-- 这道题就是杜教筛板子题,也没什么好讲的-- 下面贴代码(不 ...
- [LeetCode] Path Sum III 二叉树的路径和之三
You are given a binary tree in which each node contains an integer value. Find the number of paths t ...
- [LeetCode] Partition Equal Subset Sum 相同子集和分割
Given a non-empty array containing only positive integers, find if the array can be partitioned into ...
- [LeetCode] Split Array Largest Sum 分割数组的最大值
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- [LeetCode] Sum of Left Leaves 左子叶之和
Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...
随机推荐
- python自动化测试-列表、元组、字典学习笔记
1.列表 格式: L = [1,2,3,5] M = [7,8,9] print(type(L)) -> :list 列表增加元素: print(L.append(10)) -&g ...
- 054_末晨曦Vue技术_处理边界情况之组件之间的循环引用
组件之间的循环引用 点击打开视频讲解更详细 假设你需要构建一个文件目录树,像访达或资源管理器那样的.你可能有一个 <tree-folder> 组件,模板是这样的: <p> &l ...
- 十周周末总结 MySQL的介绍与使用
python 十周周末总结 MySQL的介绍与使用 MySQL字符编码与配置文件 查看数据库的基本信息(用户,字符编码) /s windos下MySQL默认的配置文件 my_default.ini 修 ...
- spring接口多实现类,该依赖注入哪一个?
一.问题的描述 在实际的系统应用开发中我经常会遇到这样的一类需求,相信大家在工作中也会经常遇到: 同一个系统在多个省份部署. 一个业务在北京是一种实现方式,是基于北京用户的需求. 同样的业务在上海是另 ...
- OpenJudge1.5.17
20:球弹跳高度的计算 总时间限制: 1000ms 内存限制: 65536kB 描述 一球从某一高度落下(整数,单位米),每次落地后反跳回原来高度的一半,再落下. 编程计算气球在第10次落地时,共经过 ...
- B2. Wonderful Coloring - 2
链接:Problem - 1551B2 - Codeforces 题意:有m个颜色,要求每种颜色内的数字各不相同,问,颜色的最大长度多少. 题解: 判断每个数字的个数,如果大于m,那么最大长度就加一 ...
- C#非托管泄漏中HEAP_ENTRY的Size对不上是怎么回事?
一:背景 1. 讲故事 前段时间有位朋友在分析他的非托管泄漏时,发现NT堆的_HEAP_ENTRY 的 Size 和 !heap 命令中的 Size 对不上,来咨询是怎么回事? 比如下面这段输出: 0 ...
- IEEE浮点数向偶数舍
CSAPP 向偶数舍入初看上去好像是个相当随意的目标--有什么理由偏向取偶数呢?为什么不始终把位于两个可表示的值中间的值都向上舍入呢?使用这种方法的一个问题就是很容易假想到这样的情景:这种方法舍入 ...
- 基于ELK Nginx日志分析
配置Nginx 日志 Nginx 默认的access 日志为log格式,需要logstash 进行正则匹配和清洗处理,从而极大的增加了logstash的压力 所以我们Nginx 的日志修改为json ...
- nginx日志输出配置json格式
修改nginx配置文件 http { include mime.types; default_type application/octet-stream; charset utf-8; # 原有日志格 ...