[AGC057D] Sum Avoidance
本篇题解大部分内容来自这篇文章
首先题意翻译:
给定一个正整数 \(S\) ,称一个正整数集合 \(A\) 是好的,当且仅当它满足以下条件:
\(A\) 中元素在 \((0,S)\) 之间
不能用 \(A\) 中元素多次相加得到 \(S\)
考虑所有好的集合中元素数量最大且字典序最小的集合 \(A\) ,多次询问,求集合 \(A\) 从小到大排序后的第 \(k\) 项,或集合大小小于 \(k\)
$ T \le 1000 , S \le 10^{18} $
解法
这什么神仙题啊光是理解题解就好困难啊
先考虑性质2:
首先容易发现 \(i,S-i\) 只能在集合中存在一个,若 \(S\) 为偶数则 \(\frac{S}{2}\) 也不能存在于集合中,所以集合的大小小于等于\(\left\lfloor\dfrac{S-1}{2}\right\rfloor\)。
其次,把所有大于 \(\left\lfloor\dfrac{S}{2}\right\rfloor\) 的整数取进集合必然满足条件,所以最大集合的大小一定为\(\left\lfloor\dfrac{S-1}{2}\right\rfloor\)。
且若要满足集合大小最大,对于 \(i< \dfrac{S}{2}\),\(n-i\) 和 \(i\) 一定有一个在集合中。
我们设所有集合 \(A\) 中 \(< \dfrac{S}{2}\)的元素构成集合 \(B\),显然 \(B\) 是 \(A\) 的子集,且确定 \(B\) 即可确定 \(A\)。
则 \(B\) 有以下性质:
\]
原因是如果 \(a+b \notin B\),则 \(n-(a+b)\),一定在 \(A\)中,那么 \(a,b,n-(a+b)\) 同时在集合 \(A\) 中,显然不满足条件。
考虑满足该性质的集合 \(B\) 及对应的 \(A\),当它不合法,即 \(A\) 中的数多次相加能拼成 \(S\) 时,若拼成 \(S\) 的数中有一个大于等于 \(\dfrac{S}{2}\)(即在集合 \(A\) 但不在集合 \(B\) 中) ,则这种情况必定不满足性质1,所以我们只需要考虑集合 \(B\) 是否合法即可。
那么接下来就是构造了,由于我们要构造字典序最小的 \(A\) ,所以只需从小往大依次枚举每个数,尝试贪心的将其加入 \(B\) ,最后得到的 \(B\) 及其对应的 \(A\) 就是我们所需要的集合 \(A\) 了。
加入数时有两种情况:
1.该数能被已经在 \(B\) 中的数组合出,那么这个数必须加,显然加入它之后集合仍旧合法。
2.当非第一种情况时,若加入该数不会使集合 \(B\) 不合法,加入该数。
我们设第一个加入集合 \(B\) 的数为 \(d\) ,容易发现,\(d\) 一定是最小的与 \(S\) 互质的数,并且在此之后每当我们用第 \(2\) 种方式加入新数时,该数一定与已经在集合中的所有数模 \(d\) 不同余(同余的话可以由已经在集合中的同余的数和若干个 \(d\) 组合出)。也就是说,以第二种方式加入的数最多只有 \(d\) 个。
接下来就来到了同余最短路的相关部分,考虑对于每个 \(i\in{0,1,···,d-1}\) 记录一个 \(f_i\) 表示已经在 \(B\) 的数可以构造出的 \(\equiv i (\mod d )\)的最小值。
显然,\(f\) 不会被第一种情况加入的数影响,且最后由 \(f\) 可以得到整个 \(B\) 集合(下文讲具体方法)。
先考虑以第二种方式加入一个数 \(v \equiv x (\mod d)\),首先一定有 \(f_x>v\) (否则就是以第一种方式加入了),可以通过枚举加入的 \(v\) 用了多少次更新 \(f\) 数组,即:
\]
一个数\(v\)能被加入当且仅当 \(f_x>v\) 且加入后 \(f_{S \mod d}>S\)。我们不妨枚举 \(x\),容易发现,对于每个 \(x\) ,加入的合法的 \(v\) 有其下界 \(dn\) ,大于等于 \(dn\) 且 \(\equiv x(\mod d)\) 且小于 \(f_x\) 的数均可加入,从而可以得到当前 \(x\) 下第一个能加入的数。(当然也可能根本不存在能加入的数)
于是我们可以对每一个 \(x\) 找到其能加的数,取其中最小的就是下一个能加的数,重复至多 \(d\) 次即可得到最终的 \(f\) 数组。
接下来就可以还原 \(B\) 了,若一个数 \(t\in B\),当且仅当 \(t < \frac{S}{2}\) 且 \(t\ge f_{t \mod d}\)。
此时容易\(O(d)\)求得 \(B\) 集合内小于等于某个数的元素个数,于是可以二分求得最终答案。复杂度为 \(O(d \log S)\),若答案\(> \frac{S}{2}\),也可以反向类似二分。
考虑 \(d\) 的范围,容易发现 \(d\) 在 \(10^{18}\) 次以内最大为 \(43\) (\(lcm(1,2,···,43)\geq 10^{18}\))。而事实上,\(d=O(\log S)\)
点击查看代码
#include <bits/stdc++.h>
#define N 50
#define M 2000010
#define pii pair<int,int>
#define mkp make_pair
#define pb push_back
#define fi first
#define se second
#define int long long
//#define MOD
#define INF 1061109567
#define int_edge int to[M],nxt[M],head[N],cnt=0;
using namespace std;
int S,k,d,f[N],in[N];
//int_edge;void add_edge(int x,int y ){to[++cnt]=y;nxt[cnt]=head[x];head[x]=cnt;}
//int_edge;int val[M];void add_edge(int x,int y,int z){to[++cnt]=y;val[cnt]=z;nxt[cnt]=head[x];head[x]=cnt;}
int check(int nw){
int tmp=0;
for(int i=0;i<d;i++)
if(nw>=f[i])tmp+=(nw-f[i])/d+1;
return tmp;
}
queue<int>q;
void spfa(int nw){
for(int i=0;i<d;i++)q.push(i),in[i]=1;
while(!q.empty()){
int u=q.front(),v=(u+nw)%d;q.pop();in[u]=0;
if(f[v]>f[u]+nw){f[v]=f[u]+nw;if(!in[v])q.push(v),in[v]=1;}
}
}
int solve(){
scanf("%lld %lld",&S,&k);
if(k>(S-1)/2)return -1;
if(S==3)return 2;
if(S==4)return 3;
if(S==6)return k+3;//d>=S/2
d=1;while(S%d==0)d++;
for(int i=1;i<d;i++)f[i]=1e18;
while(1){
int v=1e18;
for(int x=1;x<d;x++){//枚举x,容易发现x肯定不是0
int dn=0;
for(int k=1;k<d;k++){//枚举k,容易发现k取0肯定也不优
int lst=(S-x*k+d*d)%d;//加上d*d用于防负数
dn=max(dn,(S-f[lst])/k+1);
}
if((dn+d-x)%d)dn+=d-(dn+d-x)%d;//确保算出来的下界mod d = x
if(dn<f[x]&&dn<v)v=dn;
}
if(v>=S/2)break;
spfa(v);//更新f
}
int l=1,r=S/2,ans=-1;
while(l<=r){
int mid=(l+r)/2;
if(check(mid)>=k+1)ans=mid,r=mid-1;//注意此处由于算入了0所以要与k+1相比
else l=mid+1;
}
if(ans!=-1)return ans;
l=1,r=S/2,k=(S-1)/2+1-k;
while(l<=r){
int mid=(l+r)/2;
if(mid-check(mid)+2>=k+1)ans=mid,r=mid-1;//同样是由于算0
else l=mid+1;
}
return S-ans;
}
signed main()
{
int T;scanf("%lld",&T);
while(T--)printf("%lld\n",solve());
return 0;
}
后记:这个题折磨了我半个下午加半个晚上,不过也算是迄今为止做过的最难的题之一了,还是很有收获的。以及我真的很想吐槽一下,我函数里重复定义了 \(d\) 调了快1个小时
[AGC057D] Sum Avoidance的更多相关文章
- LeetCode - Two Sum
Two Sum 題目連結 官網題目說明: 解法: 從給定的一組值內找出第一組兩數相加剛好等於給定的目標值,暴力解很簡單(只會這樣= =),兩個迴圈,只要找到相加的值就跳出. /// <summa ...
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 112 - Path Sum
题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- BZOJ 3944 Sum
题目链接:Sum 嗯--不要在意--我发这篇博客只是为了保存一下杜教筛的板子的-- 你说你不会杜教筛?有一篇博客写的很好,看完应该就会了-- 这道题就是杜教筛板子题,也没什么好讲的-- 下面贴代码(不 ...
- [LeetCode] Path Sum III 二叉树的路径和之三
You are given a binary tree in which each node contains an integer value. Find the number of paths t ...
- [LeetCode] Partition Equal Subset Sum 相同子集和分割
Given a non-empty array containing only positive integers, find if the array can be partitioned into ...
- [LeetCode] Split Array Largest Sum 分割数组的最大值
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
- [LeetCode] Sum of Left Leaves 左子叶之和
Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...
随机推荐
- jQuery使用case记录
添加元素/内容追加等 元素内: append() - 在被选元素的结尾插入内容 prepend() - 在被选元素的开头插入内容 元素外: after() - 在被选元素之后插入内容 before() ...
- [CSP-S 2019 day2 T2] 划分
题面 题解 CSP赛场上能请教别人吗 在这道题中,我看到了一个很敏感又很熟悉的东西--平方! 这意味着,可以推出一些结论,使这道题几乎可以边输入边解决. 自己在脑子里动态一下就知道,像这种总和一定.代 ...
- Job And Schedule (V8R6C4)
KingbaseES 数据库提供了 kdb_schedule 扩展,使得用户能通过类似oracle job 的方式进行job调用.kdb_schedule 提供了三个Schema :dbms_job ...
- docker-compose概述--翻译
Overview of Docker Compose 译文 Docker Compose 是一个用来定义和执行多Docker容器程序的工具,如果使用Compose,你将可以使用一个YAML文件来配置你 ...
- 通过VS下载的NuGet包,如何修改其下载存放路径?
一.了解NuGet包的默认存放路径 我们通过NuGet包管理器下载的引用包,默认是存放在C盘的,存储路径一般是: C:\Users\{系统用户名}\.nuget\packages 我们都知道,C盘的存 ...
- Mysql 实现 向上递归查找父节点并返回树结构
需求:通过mysql 8.0以下版本实现,一个人多角色id,一个角色对应某个节点menu_id,根节点的父节点存储为NULL, 向上递归查找父节点并返回树结构. 如果只有叶子,剔除掉; 如果只有根,只 ...
- LibTorch 多项分布
最近在学习过程中需要对服从某种分布的离散型随机变量进行抽样,在LibTroch中查到了torch::multinomial(多项分布),该方法的接口如下: at::Tensor multinomial ...
- Windows DNS服务器的子网掩码排序
对于跨多个站点部署的应用服务,会在各个站点都有服务器,并且对应不同的IP地址.我们希望每个客户端访问就近的资源.这个时候可以启用Windows DNS服务器中的子网掩码排序(子网优先)netmask ...
- 微信小程序开发总结-怀庄酒业投票活动
使用微信小程序投票活动云开发 怀庄酒业活动 使用云开发.开始准备使用django开发自己的后台,但是发现功能比较简单,使用云开发更省事 项目结构: cloudfunctions目录下是三个云函数 ba ...
- k8s日志架构和基本日志
如果一个容器崩溃了.一个Pod被驱逐了.或者一个节点停机了,您通常仍然需要访问您应用程序的日志.为此,您需要一个生命周期与节点.Pod.容器相对独立的存储空间来存储应用程序日志和系统日志. 此时,我们 ...