在 Docker 上快速运行 Apache Airflow 2.2.4
Docker 安装 Apache Airflow
参考资料
安装依赖
- Docker Engine
- Docker Composite
快速运行 Apache Airflow 2.2.4
在 Docker 使用 CeleryExecutor(一种统计 worker 数量的途径) 快速运行 Apache Airflow
1. 下载 docker-compose.yaml
命令:
# 创建一个目录
mkdir -p /home/public/Soft/airflow
cd /home/public/Soft/airflow
# 下载
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.2.4/docker-compose.yaml'
这个文件包含了多个服务的定义:
- airflow-scheduler - The scheduler monitors all tasks and DAGs, then triggers the task instances once their dependencies are complete.
- airflow-webserver - The webserver is available at http://localhost:8080.
- airflow-worker - The worker that executes the tasks given by the scheduler.
- airflow-init - The initialization service.
- flower - The flower app for monitoring the environment. It is available at http://localhost:5555.
- postgres - The database.
- redis - The redis - broker that forwards messages from scheduler to worker.
docker-compose.yaml 文件内容如下:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow.
# Default: apache/airflow:2.2.4
# AIRFLOW_UID - User ID in Airflow containers
# Default: 50000
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested).
# Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested).
# Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
# Default: ''
#
# Feel free to modify this file to suit your needs.
---
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.2.4}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
AIRFLOW__API__AUTH_BACKEND: 'airflow.api.auth.backend.basic_auth'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ./dags:/opt/airflow/dags
- ./logs:/opt/airflow/logs
- ./plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 5s
retries: 5
restart: always
redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 30s
retries: 50
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- 8080:8080
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 10s
timeout: 10s
retries: 5
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
user: "0:0"
volumes:
- .:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
flower:
<<: *airflow-common
command: celery flower
ports:
- 5555:5555
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
postgres-db-volume:
2. 在 docker-compose.yaml 同级目录下创建文件夹
在 docker-compose.yaml 同级目录下,创建 dags logs plugins文件夹
cd /home/public/Soft/airflow
mkdir -p ./dags
mkdir -p ./logs
mkdir -p ./plugins
dags logs plugins文件夹 作用:
- ./dags - you can put your DAG files here.
- ./logs - contains logs from task execution and scheduler.
- ./plugins - you can put your custom plugins here.
3. 初始化环境
初始化环境,就是添加几个文件夹。
3.1 设置正确的用户
命令:
cd /home/public/Soft/airflow
echo -e "AIRFLOW_UID=$(id -u)" > .env
其中,AIRFLOW_UID 是 Docker Compose 环境变量,具体请看(https://airflow.apache.org/docs/apache-airflow/2.2.4/start/docker.html#docker-compose-env-variables )。
生成的 .env 文件内容可能如下:
AIRFLOW_UID=50000
3.2 初始化数据库
cd /home/public/Soft/airflow
docker-compose up airflow-init
控制台可能打印如下内容:
airflow-init_1 | Upgrades done
airflow-init_1 | Admin user airflow created
airflow-init_1 | 2.2.4
start_airflow-init_1 exited with code 0
初始化,默认的 Airflow 的登陆用户和密码 : airflow airflow
4. 运行 airflow
cd /home/public/Soft/airflow
docker-compose up
5. 访问环境
有3中方式访问环境:命令行,浏览器访问,REST API。
5.1 命令行
下载 airflow.sh
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.2.4/airflow.sh'
chmod +x airflow.sh
airflow.sh 脚本内容如下:
#!/usr/bin/env bash
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Run airflow command in container
#
PROJECT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
set -euo pipefail
export COMPOSE_FILE="${PROJECT_DIR}/docker-compose.yaml"
if [ $# -gt 0 ]; then
exec docker-compose run --rm airflow-cli "${@}"
else
exec docker-compose run --rm airflow-cli
fi
使用 airflow.sh 可以快速执行命令,例如:
arflow.sh info
5.2 浏览器访问
浏览器访问 http://localhost:8080
默认登录名和密码: airflow airflow
5.3 给 REST API 发请求
使用 curl 发请求:
ENDPOINT_URL="http://localhost:8080/"
curl -X GET \
--user "airflow:airflow" \
"${ENDPOINT_URL}/api/v1/pools"
清除容器
清除容器,卷等,命令如下:
docker-compose down --volumes --rmi all
清除环境信息
以上是快速启动配置,如果需要定制化配置,则可以先清除环境信息
- 停止容器
cd /home/public/Soft/airflow
docker-compose down --volumes --remove-orphans
- 删除下载目录和 docker-compose.yaml
cd /home/public/Soft/airflow
rm -rf *
- 重新下载 docker-compose.yaml
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.2.4/docker-compose.yaml'
- 从开头重新执行指令
在 Docker 上快速运行 Apache Airflow 2.2.4的更多相关文章
- Windows OS上安装运行Apache Kafka教程
Windows OS上安装运行Apache Kafka教程 下面是分步指南,教你如何在Windows OS上安装运行Apache Zookeeper和Apache Kafka. 简介 本文讲述了如何在 ...
- 在docker上安装运行mysql实例
ps:实验环境是:CentOS Linux release 7.3 64位1.获取mysql镜像从docker hub的仓库中拉取mysql镜像docker pull mysql查看镜像docker ...
- Kafka-Docker:使用Docker运行Apache Kafka的步骤
1.目标 在这个Kafka教程中,我们将学习Kafka-Docker的概念.此外,我们将在Kafka中看到Docker的卸载过程.这包括使用Docker 运行Apache Kafka的所有步骤 .除 ...
- Apache PredictionIO在Docker上的搭建及使用
1.Apache PredictionIO介绍 Apache PredictionIO 是一个孵化中的机器学习服务器,它可以为为开发人员和数据科学家创建任何机器学习任务的预测引擎.官方原文: Apac ...
- 在 Docker 上运行一个 RESTful 风格的微服务
tags: Microservice Restful Docker Author: Andy Ai Weibo:NinetyH GitHub: https://github.com/aiyanbo/d ...
- .NET Core 3.0 部署在docker上运行
自从.NET Core3.0发布之后,写了几篇关于.NET Core 3.0的文章,有助于你快速入门.NET Core3.0. 本篇文章主要讲解如何一步步创建一个mvc项目,然后发布并部署在Docke ...
- 在OSX和Windows版本Docker上运行GUI程序
看到很多人在Docker问题区讨论:如何在OS X和Windows的Docker上运行GUI程序, 随手记录几个参考资料: https://github.com/docker/docker/issue ...
- 理一下docker在各平台上的运行机制
理一下docker在各平台上的运行机制 首先,从内核共享与否 docker在linux上共享内核,无需虚拟化,完全支持native功能(https://docs.docker.com/engine/i ...
- ELK 性能(3) — 在 Docker 上运行高性能容错的 Elasticsearch 集群
ELK 性能(3) - 在 Docker 上运行高性能容错的 Elasticsearch 集群 介绍 在 Docker 上运行高性能容错的 Elasticsearch 集群 内容 通常熟悉的开发流程是 ...
随机推荐
- LGP6156题解
真·简单题 题目大意 给定 \(n\) 和 \(k\),求出这个柿子的值: \[\sum_{i=1}^n\sum_{j=1}^n(i+j)^k\mu^2(\gcd(i,j)gcd(i,j) \] 按照 ...
- 《shader入门精要》13.2再谈运动模糊中片元着色器的世界坐标的计算
具体在书p275页 这里为啥需要除D.w呢. 首先我们得到的NDC的坐标是已经归一化的,但是CurrenViewProjectionMatrix的作用,是把世界空间转化为尚未归一化的裁剪空间. 这里看 ...
- PO模式在selenium自动化测试框架有什么好处
PO模式是在UI自动化测试过程当中使用非常频繁的一种设计模式,使用这种模式后,可以有效的提升代码的复用能力,并且让自动化测试代码维护起来更加方便. PO模式的全称叫page object model( ...
- egg启动时,报错:Ignoring invalid timezone passed to Connection的解决方案
报错信息 Ignoring invalid timezone passed to Connection: +8:00. This is currently a warning, but in futu ...
- OAuth2和JWT - 如何设计安全的API?
JWT和OAuth2比较? 要比较JWT和OAuth2?首先要明白一点就是,这两个根本没有可比性,是两个完全不同的东西. JWT是一种认证协议 JWT提供了一种用于发布接入令牌(Acce ...
- 在 Kubernetes 上快速测试 Citus 分布式 PostgreSQL 集群(分布式表,共置,引用表,列存储)
准备工作 这里假设,你已经在 k8s 上部署好了基于 Citus 扩展的分布式 PostgreSQL 集群. 查看 Citus 集群(kubectl get po -n citus),1 个 Coor ...
- jQuery--选择器案例实战
1.案例需求 jquery最基础的选择器部分已经基本结束,来一个简单案例总结回顾下学的东西. 案例需求: 用一个按钮控制元素的显示与隐藏,页面如下,从第五个开始,不要最后一个,控制他们的显示和隐藏. ...
- List和 Map区别?
一个是存储单列数据的集合,另一个是存储键和值这样的双列数据的集合,List中存储的数据是有顺序,并且允许重复:Map中存储的数据是没有顺序的,其键是不能重复的,它的值是可以有重复的.
- WeakHashMap 是怎么工作的?
WeakHashMap 的工作与正常的 HashMap 类似,但是使用弱引用作为 key,意思就是当 key 对象没有任何引用时,key/value 将会被回收.
- @Autowired 注解有什么用?
@Autowired 可以更准确地控制应该在何处以及如何进行自动装配.此注解用于在 setter 方法,构造函数,具有任意名称或多个参数的属性或方法上自动装配bean.默认情况下,它是类型驱动的注入. ...