Docker 安装 Apache Airflow

参考资料

安装依赖

  1. Docker Engine
  2. Docker Composite

快速运行 Apache Airflow 2.2.4

在 Docker 使用 CeleryExecutor(一种统计 worker 数量的途径) 快速运行 Apache Airflow

1. 下载 docker-compose.yaml

命令:


# 创建一个目录
mkdir -p /home/public/Soft/airflow
cd /home/public/Soft/airflow
# 下载
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.2.4/docker-compose.yaml'

这个文件包含了多个服务的定义:

  • airflow-scheduler - The scheduler monitors all tasks and DAGs, then triggers the task instances once their dependencies are complete.
  • airflow-webserver - The webserver is available at http://localhost:8080.
  • airflow-worker - The worker that executes the tasks given by the scheduler.
  • airflow-init - The initialization service.
  • flower - The flower app for monitoring the environment. It is available at http://localhost:5555.
  • postgres - The database.
  • redis - The redis - broker that forwards messages from scheduler to worker.

docker-compose.yaml 文件内容如下:

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# # Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow.
# Default: apache/airflow:2.2.4
# AIRFLOW_UID - User ID in Airflow containers
# Default: 50000
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested).
# Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested).
# Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
# Default: ''
#
# Feel free to modify this file to suit your needs.
---
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.2.4}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
AIRFLOW__API__AUTH_BACKEND: 'airflow.api.auth.backend.basic_auth'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ./dags:/opt/airflow/dags
- ./logs:/opt/airflow/logs
- ./plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 5s
retries: 5
restart: always redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 30s
retries: 50
restart: always airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- 8080:8080
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 10s
timeout: 10s
retries: 5
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
user: "0:0"
volumes:
- .:/sources airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow flower:
<<: *airflow-common
command: celery flower
ports:
- 5555:5555
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully volumes:
postgres-db-volume:

2. 在 docker-compose.yaml 同级目录下创建文件夹

在 docker-compose.yaml 同级目录下,创建 dags logs plugins文件夹

cd /home/public/Soft/airflow
mkdir -p ./dags
mkdir -p ./logs
mkdir -p ./plugins

dags logs plugins文件夹 作用:

  • ./dags - you can put your DAG files here.
  • ./logs - contains logs from task execution and scheduler.
  • ./plugins - you can put your custom plugins here.

3. 初始化环境

初始化环境,就是添加几个文件夹。

3.1 设置正确的用户

命令:

cd /home/public/Soft/airflow
echo -e "AIRFLOW_UID=$(id -u)" > .env

其中,AIRFLOW_UID 是 Docker Compose 环境变量,具体请看(https://airflow.apache.org/docs/apache-airflow/2.2.4/start/docker.html#docker-compose-env-variables )。

生成的 .env 文件内容可能如下:

AIRFLOW_UID=50000

3.2 初始化数据库

cd /home/public/Soft/airflow
docker-compose up airflow-init

控制台可能打印如下内容:

airflow-init_1       | Upgrades done
airflow-init_1 | Admin user airflow created
airflow-init_1 | 2.2.4
start_airflow-init_1 exited with code 0

初始化,默认的 Airflow 的登陆用户和密码 : airflow airflow

4. 运行 airflow

cd /home/public/Soft/airflow
docker-compose up

5. 访问环境

有3中方式访问环境:命令行,浏览器访问,REST API。

5.1 命令行

下载 airflow.sh

curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.2.4/airflow.sh'
chmod +x airflow.sh

airflow.sh 脚本内容如下:

#!/usr/bin/env bash
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License. #
# Run airflow command in container
# PROJECT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)" set -euo pipefail export COMPOSE_FILE="${PROJECT_DIR}/docker-compose.yaml"
if [ $# -gt 0 ]; then
exec docker-compose run --rm airflow-cli "${@}"
else
exec docker-compose run --rm airflow-cli
fi

使用 airflow.sh 可以快速执行命令,例如:

arflow.sh info

5.2 浏览器访问

浏览器访问 http://localhost:8080
默认登录名和密码: airflow airflow

5.3 给 REST API 发请求

使用 curl 发请求:

ENDPOINT_URL="http://localhost:8080/"
curl -X GET \
--user "airflow:airflow" \
"${ENDPOINT_URL}/api/v1/pools"

清除容器

清除容器,卷等,命令如下:

docker-compose down --volumes --rmi all

清除环境信息

以上是快速启动配置,如果需要定制化配置,则可以先清除环境信息

  1. 停止容器
cd /home/public/Soft/airflow
docker-compose down --volumes --remove-orphans
  1. 删除下载目录和 docker-compose.yaml
cd /home/public/Soft/airflow
rm -rf *
  1. 重新下载 docker-compose.yaml
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.2.4/docker-compose.yaml'

  1. 从开头重新执行指令

在 Docker 上快速运行 Apache Airflow 2.2.4的更多相关文章

  1. Windows OS上安装运行Apache Kafka教程

    Windows OS上安装运行Apache Kafka教程 下面是分步指南,教你如何在Windows OS上安装运行Apache Zookeeper和Apache Kafka. 简介 本文讲述了如何在 ...

  2. 在docker上安装运行mysql实例

    ps:实验环境是:CentOS Linux release 7.3  64位1.获取mysql镜像从docker hub的仓库中拉取mysql镜像docker pull mysql查看镜像docker ...

  3. Kafka-Docker:使用Docker运行Apache Kafka的步骤

    1.目标 在这个Kafka教程中,我们将学习Kafka-Docker的概念.此外,我们将在Kafka中看到Docker的卸载过程.这包括使用Docker 运行Apache Kafka的所有步骤  .除 ...

  4. Apache PredictionIO在Docker上的搭建及使用

    1.Apache PredictionIO介绍 Apache PredictionIO 是一个孵化中的机器学习服务器,它可以为为开发人员和数据科学家创建任何机器学习任务的预测引擎.官方原文: Apac ...

  5. 在 Docker 上运行一个 RESTful 风格的微服务

    tags: Microservice Restful Docker Author: Andy Ai Weibo:NinetyH GitHub: https://github.com/aiyanbo/d ...

  6. .NET Core 3.0 部署在docker上运行

    自从.NET Core3.0发布之后,写了几篇关于.NET Core 3.0的文章,有助于你快速入门.NET Core3.0. 本篇文章主要讲解如何一步步创建一个mvc项目,然后发布并部署在Docke ...

  7. 在OSX和Windows版本Docker上运行GUI程序

    看到很多人在Docker问题区讨论:如何在OS X和Windows的Docker上运行GUI程序, 随手记录几个参考资料: https://github.com/docker/docker/issue ...

  8. 理一下docker在各平台上的运行机制

    理一下docker在各平台上的运行机制 首先,从内核共享与否 docker在linux上共享内核,无需虚拟化,完全支持native功能(https://docs.docker.com/engine/i ...

  9. ELK 性能(3) — 在 Docker 上运行高性能容错的 Elasticsearch 集群

    ELK 性能(3) - 在 Docker 上运行高性能容错的 Elasticsearch 集群 介绍 在 Docker 上运行高性能容错的 Elasticsearch 集群 内容 通常熟悉的开发流程是 ...

随机推荐

  1. JDBC 使用详解

    1.JDBC 编程步骤: 加载驱动程序; Class.forName(driverClass) 加载Mysql驱动:Class.forName("com.mysql.jdbc.Driver& ...

  2. 学习HashMap源码

    HashMap简介 ​ HashMap是一种存储K-V类型的容器,HashMap底层数据结构为数组+链表+红黑树(jdk 1.8新增),它根据键的HashCode值存储数据,获取元素的时间复杂度为O( ...

  3. Centos7下开启防火墙,允许通过的端口

    1.查看防火墙状态 systemctl status firewalld 2.如果不是显示active状态,需要打开防火墙 systemctl start firewalld 3.# 查看所有已开放的 ...

  4. ssh编译安装后重启失败问题

    编译好的ssh重启出现如下报错 这个原因是因为systemd与ssh不兼容造成的 删掉服务 rm /usr/lib/systemd/system/sshd.service 重启 /etc/init.d ...

  5. django之分页,纯python代码

    Django中分页 py文件代码 """ 自定义分页组件 可以返回分页的数据和分页的HTML代码 """ from django.http ...

  6. 【死磕NIO】— 探索 SocketChannel 的核心原理

    大家好,我是大明哥,一个专注于[死磕 Java]系列创作的程序员. [死磕 Java ]系列为作者「chenssy」 倾情打造的 Java 系列文章,深入分析 Java 相关技术核心原理及源码. 死磕 ...

  7. 渲染一个react?

    分为首次渲染和更新渲染 生命周期, 建立虚拟DOM, 进行diff算法 对比新旧DOM, 节点对比, 将算法复杂度从O(n^3)降低到O(n) key值优化, 避免用index作为key值, 兄弟节点 ...

  8. 深入理解Java虚拟机-JVM运行时数据区域

    一.运行时数据区域 1.程序计数器 程序计数器( Program Counter Register) 是一块较小的内存空间, 它可以看作是当前线程所执行的字节码的行号指示器. Java虚拟机的多线程是 ...

  9. Mybatis是如何将sql执行结果封装为目标对象并返回的? 都有哪些映射形式?

    第一种是使用<resultMap>标签,逐一定义数据库列名和对象属性名之间的映 射关系. 第二种是使用 sql 列的别名功能,将列的别名书写为对象属性名. 有了列名与属性名的映射关系后,M ...

  10. ArrayList跟LinkedList的区别

    ArrayList和LinkedList都是实现list接口,它们不同如下: ArrayList是基于索引的数据接口,底层是数组.它可以以O(1)时间复杂度对元素进行随机访问.与此相对,linkedL ...