SQL注入问题

怪象一:输对用户就可以登录成功

怪象二:不需要对的用户名和密码也可以登录成功

SQL注入:利用特殊的组合产生特殊的含义 从而避开正常的业务逻辑

select * from userinfo where name='jason' -- jjkkjkoo' and pwd=''
select * from usernifo where name='xyz' or 1=1 -- adhjajdh and pwd=''

针对上述的SQL注入问题 核心在于手动拼接了关键数据 交给execute处理即可

sql = 'select * from userinfo where name=%s and pwd=%s'
cursor.execute(sql,(username,password))
补充说明:executemany(sql,[(),(),()...])

视图

视图就是通过查询得到一张虚拟表 然后保存下来 下次直接使用

create view teacher2course as
select * from teacher inner join course on teacher.tid = course.teacher_id;

视图的表只能用来查询不能做其他增删改查操作

视图尽量少用 会跟正真的表产生混淆 从而干扰操作者

触发器

达到某个条件之后自动触发执行

在MySQL中更加详细的说明是触发器:针对表继续增、删、改操作能够自动触发

主要有六种情况:增前、增后、删前、删后、改前、改后

create trigger 触发器的名字 before/after insert/update/delete on 表名 for each row
begin
sql语句
end
1.触发器命名有一定的规律
tri_before_insert_t1
tri_after_delete_t2
tri_after_update_t2
2.临时修改SQL语句的结束条件
因为有些操作中需要使用分号

触发器实际应用

create table cmd(
id int primary key auto_increment,
user char(32),
priv char(10),
cmd char(64),
sud_time datetime, # 提交时间
success enum ('yes', 'no') #0代表执行失败
); create table errlog(
id int primary key auto_increment,
err_cmd char (64),
err_time datetime
); delimiter $$ # 将mysql默认的结束符由;号换成$$
create trigger tri_after_insert_cmd after insert on cmd for each row
begin
if new_success = 'no' then # 新记录都会被MySQL封装成new对象
insert into errlog(err_cmd,err_time)
values(new.cmd,new.sub_time);
end if;
end $$
delimiter ; # 结束记得改回来 不然后面结束符就都是$$了
# 往表cmd中插入记录 触发触发器 根据if的条件决定是否插入错误日志
insert into cmd (
user,
prvi,
cmd,
sub_time,
success
)
values
('kevin','0755','ls -l /etc',NOW(),'yes'),
('kevin','0755','cat /etc/passwd',NOW(),'no'),
('kevin','0755','useradd xxx',NOW(),'no'),
('kevin','0755','ps aux',NOW(),'yes');
# 查询errlog表记录
select * from errlog;
# 查看所有的触发器
show triggers;
# 删除触发器;
drop trigger tri_after_insert_cmd;

事物

一个最小的不可再分的工作单元;通常一个事务对应一个完整的业务(例如银行账户转账业务,该业务就是一个最小的工作单元)

一个完整的业务需要批量的DML(insert、update、delete)语句共同联合完成

事务只和DML语句有关,或者说DML语句才有事务。这个和业务逻辑有关,业务逻辑不同,DML语句的个数不同

事物的四大特性(ACID):

A:原子性

事务中的各项操作是不可分割的整体 要么同时成功要么同时失败

C:一致性

使数据库从一个一致性状态变到另一个一致性状态

I:隔离性

多个事务之间彼此不干扰

D:持久性

也称永久性,指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的

A:原子性

​ 指事务是一个不可再分割的工作单位,事务中的操作要么都发生,要么都不发生。

特点:

1、事务是一个完整的操作,事务的各元素是不可分的。

2、事务中的所有元素必须作为一个整体提交或回滚。

3、如果事务中的任何元素失败,则整个事务将失败。

举例:

​ 比如转账的时候,如果对方接收失败了,钱应该退回自己的账户中。让双方的数据都回到转账前的状态。

C:一致性

​ 指在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。一致性与原子性是密切相关的。

特点:

1、当事务完成时,数据必须处于一致状态。

2、在事务开始前,数据库中存储的数据处于一致状态。

3、在正在进行的事务中,数据可能处于不一致的状态。

4、当事务成功完成时,数据必须再次回到已知的一致状态。

举例:

​ 对银行转帐事务,不管事务成功还是失败,应该保证事务结束后表中A和B的存款总额跟事务执行前一致。

I:隔离性

​ 指在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间(多个事务之间彼此不干扰)。

特点:

1、对数据进行修改的所有并发事务是彼此隔离的,表明事务必须是独立的,它不应以任何方式依赖于或影响其他事务。

2、修改数据的事务可在另一个使用相同数据的事务开始之前访问

3、这些数据,或者在另一个使用相同数据的事务结束之后访问这些数据

D:持久性

​ 持久性也称永久性,指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的,并不会被回滚。

特点:

1、指不管系统是否发生故障,事务处理的结果都是永久的。

2、一旦事务被提交,事务的效果会被永久地保留在数据库中

create table user(
id int primary key auto_increment,
name char(32),
balance int
); insert into user(name,balance)
values
('jason',1000),
('kevin',1000),
('tank',1000); # 修改数据之前先开启事务操作
start transaction; # 修改操作
update user set balance=900 where name='jason'; #买支付100元
update user set balance=1010 where name='kevin'; #中介拿走10元
update user set balance=1090 where name='tank'; #卖家拿到90元 # 回滚到上一个状态
rollback; # 开启事务之后,只要没有执行commit操作,数据其实都没有真正刷新到硬盘
commit; """
事务相关关键字
start transaction;
rollback
commit
savepoint
"""

事务之间的相互影响:

1、脏读:一个事务读取了另一个事务未提交的数据,而这个数据是有可能回滚的。

2、不可重复读:一个事务内两个相同的查询却返回了不同数据。这是由于查询时系统中其他事务修改的提交而引起的。

3、幻读:一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。同时,另一个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,操作前一个事务的用户会发现表中还有没有修改的数据行,就好象发生了幻觉一样。

4、丢失更新:两个事务同时读取同一条记录,A先修改记录,B也修改记录(B不知道A修改过),B提交数据后B的修改结果覆盖了A的修改结果。

在SQL标准中定义了四种隔离级别,每一种级别都规定了一个事务中所做的修改

InnoDB支持所有隔离级别

set transaction isolation level 级别
  1. read uncommitted(未提交读)

    事务中的修改即使没有提交,对其他事务也都是可见的,事务可以读取未提交的数据,这一现象也称之为"脏读"
  2. read committed(提交读)

    大多数数据库系统默认的隔离级别

    一个事务从开始直到提交之前所作的任何修改对其他事务都是不可见的,这种级别也叫做"不可重复读"
  3. repeatable read(可重复读) MySQL默认隔离级别

    能够解决"脏读"问题,但是无法解决"幻读"

    所谓幻读指的是当某个事务在读取某个范围内的记录时另外一个事务又在该范围内插入了新的记录,当之前的事务再次读取该范围的记录会产生幻行,InnoDB和XtraDB通过多版本并发控制(MVCC)及间隙锁策略解决该问题
  4. serializable(可串行读)

    强制事务串行执行,很少使用该级别
MVCC只能在read committed(提交读)、repeatable read(可重复读)两种隔离级别下工作,其他两个不兼容(read uncommitted:总是读取最新  serializable:所有的行都加锁)

InnoDB的MVCC通过在每行记录后面保存两个隐藏的列来实现MVCC
一个列保存了行的创建时间
一个列保存了行的过期时间(或删除时间) # 本质是系统版本号
每开始一个新的事务版本号都会自动递增,事务开始时刻的系统版本号会作为事务的版本号用来和查询到的每行记录版本号进行比较

例如:

刚插入第一条数据的时候,我们默认事务id为1,实际是这样存储的
username create_version delete_version
jason 1
可以看到,我们在content列插入了kobe这条数据,在create_version这列存储了1,1是这次插入操作的事务id。
然后我们将jason修改为jason01,实际存储是这样的
username create_version delete_version
jason 1 2
jason01 2
可以看到,update的时候,会先将之前的数据delete_version标记为当前新的事务id,也就是2,然后将新数据写入,将新数据的create_version标记为新的事务id
当我们删除数据的时候,实际存储是这样的
username create_version delete_version
jason01 2 3

由此当我们查询一条件记录的时候 只有满足以下两个条件才会被显示出来:

  1. 当前事物id要大于或者等于当前行的create_version值 这表示事务开始前这行数据已经存在了
  2. 当前事务id要小于delete_version值 这表示在事务开始之后这行记录才被删除

存储过程

可以看成python中的自定义函数

无参函数

delimiter $$
create procedure p1()
begin
select * from cmd;
end $$
delimiter;
# 调用
call p1()

有参函数

delimiter $$
create procedure p2(
in m int, # in表示这个参数必须只能是传入不能被返回出去
in n int,
out res int # out表示 这个参数可以被返回出去 还有一个inout表示即可以传入也可以被返回出去
)
begin
select * from cmd where id > m and id < n;
set res=0; # 用来标志存储过程是否执行
end $$
delimiter; # 针对res需要先提前定义
set @res=10; 定义
select @res; 查看
call p1(1,5,@res) 调用
select @res 查看 查看储存过程具体信息
show create procedure pro1;
查看所有存储过程
show procedure status;
删除存储过程
drop procedure pro1;

大前提:存储过程在哪个库下面创建的只能在对应的库下面才能使用

  1. 直接在mysql中调用
set @res=10  # res的值用来判断存储过程是否被执行成功的依据 所以需要先定义一个变量@res存储10
call p1(2,4,10); # 报错
call p1(2,4,@res); # 查看结果
select @res; # 执行成功 @res变量值发生了变化
  1. 在python程序中调用
pymysql链接mysql
产生的游表cursor.callproc('p1',(2,4,10)) # 内部原理:@_p1_0=2,@_p1_1=4,@_p1_2=10;
cursor.excute('select @_p1_2;')

函数

可以看成是python中的内置函数

"ps:可以通过help 函数名    查看帮助信息!"
# 1.移除指定字符
Trim、LTrim、RTrim # 2.大小写转换
Lower、Upper # 3.获取左右起始指定个数字符
Left、Right # 4.返回读音相似值(对英文效果)
Soundex
"""
eg:客户表中有一个顾客登记的用户名为J.Lee
但如果这是输入错误真名其实叫J.Lie,可以使用soundex匹配发音类似的
where Soundex(name)=Soundex('J.Lie')
""" # 5.日期格式:date_format
'''在MySQL中表示时间格式尽量采用2022-11-11形式'''
CREATE TABLE blog (
id INT PRIMARY KEY auto_increment,
NAME CHAR (32),
sub_time datetime
);
INSERT INTO blog (NAME, sub_time)
VALUES
('第1篇','2015-03-01 11:31:21'),
('第2篇','2015-03-11 16:31:21'),
('第3篇','2016-07-01 10:21:31'),
('第4篇','2016-07-22 09:23:21'),
('第5篇','2016-07-23 10:11:11'),
('第6篇','2016-07-25 11:21:31'),
('第7篇','2017-03-01 15:33:21'),
('第8篇','2017-03-01 17:32:21'),
('第9篇','2017-03-01 18:31:21');
select date_format(sub_time,'%Y-%m'),count(id) from blog group by date_format(sub_time,'%Y-%m'); 1.where Date(sub_time) = '2015-03-01'
2.where Year(sub_time)=2016 AND Month(sub_time)=07;
# 更多日期处理相关函数
adddate 增加一个日期
addtime 增加一个时间
datediff计算两个日期差值

流程控制

分支结构

declare i int default 0;
IF i = 1 THEN
SELECT 1;
ELSEIF i = 2 THEN
SELECT 2;
ELSE
SELECT 7;
END IF;

循环结构

DECLARE num INT ;
SET num = 0 ;
WHILE num < 10 DO
SELECT num ;
SET num = num + 1 ;
END WHILE ;

索引相关概念

索引就好比一本书的目录 它能让你更快的找到自己想要的内容

让获取的数据更有目的性 从而提高数据库检索数据的性能

索引在MySQL中也叫 '键', 是存储引擎用于快速找到记录的一种数据结构

* primary key
* unique key
* index key
  1. 上述的三个key都可以加快数据查询
  2. primary key和unique key除了可以加快查询本身还自身限制条件而index key很单一就是用来加快数据查询
  3. 外键不属于索引键的范围 使用来建立关系的 与加快查询无关

索引加快查询的本质

	id int primary key auto_increment,
name varchar(32) unique,
province varchar(32)
age int
phone bigint select name from userinfo where phone=18818888888; # 一页页的翻
select name from userinfo where id=99999; # 按照目录确定页数找

索引可以加快数据查询 但是会降低增删的速度

通常情况下我们频繁使用某些字段查询数据 为了提升查询的速度可

将该字段建立索引

聚集索引(primary key)
主键、主键索引
辅助索引(unique,index)
除主键意外的都是辅助索引
覆盖索引
select name from user where name='jason';
非覆盖索引
select age from user where name='jason';

索引数据结构

索引底层其实是树结构>>>:树是计算机底层的数据结构

树有很多中类型
二叉树、b树、b+树、B*树...... 二叉树
二叉树里面还可以细分成很多领域 我们简单的了解即可
二叉意味着每个节点最大只能分两个子节点
B树
所有的节点都可以存放完整的数据
B+\*树
只有叶子节点才会存放真正的数据 其他节点只存放索引数据
B+叶子节点增加了指向其他叶子节点的指针
B*叶子节点和枝节点都有指向其他节点的指针 辅助索引在查询数据的时候最会还是需要借助于聚集索引
辅助索引叶子节点存放的是数据的主键值 有时候就算采用索引字段查询数据 也可能不会走索引!!!
最好能记三个左右的特殊情况

慢查询优化

explain命令引用
常见的索引扫描类型
1.index 尽量避免
2.range
3.ref
4.eq_ref
5.const
6.system
7.null
从上到下 性能从最差到最好 我们认为至少要达到range级别

慢查询优化:https://www.cnblogs.com/Dominic-Ji/articles/15426531.html

测试装备

准备

#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
); #2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<3000000)do
insert into s1 values(i,'jason','male',concat('jason',i,'@oldboy'));
set i=i+1;
end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号 #3. 查看存储过程
show create procedure auto_insert1\G #4. 调用存储过程
call auto_insert1();
# 表没有任何索引的情况下
select * from s1 where id=30000;
# 避免打印带来的时间损耗
select count(id) from s1 where id = 30000;
select count(id) from s1 where id = 1; # 给id做一个主键
alter table s1 add primary key(id); # 速度很慢 select count(id) from s1 where id = 1; # 速度相较于未建索引之前两者差着数量级
select count(id) from s1 where name = 'jason' # 速度仍然很慢 """
范围问题
"""
# 并不是加了索引,以后查询的时候按照这个字段速度就一定快
select count(id) from s1 where id > 1; # 速度相较于id = 1慢了很多
select count(id) from s1 where id >1 and id < 3;
select count(id) from s1 where id > 1 and id < 10000;
select count(id) from s1 where id != 3; alter table s1 drop primary key; # 删除主键 单独再来研究name字段
select count(id) from s1 where name = 'jason'; # 又慢了 create index idx_name on s1(name); # 给s1表的name字段创建索引
select count(id) from s1 where name = 'jason' # 仍然很慢!!!
"""
再来看b+树的原理,数据需要区分度比较高,而我们这张表全是jason,根本无法区分
那这个树其实就建成了“一根棍子”
"""
select count(id) from s1 where name = 'xxx';
# 这个会很快,我就是一根棍,第一个不匹配直接不需要再往下走了
select count(id) from s1 where name like 'xxx';
select count(id) from s1 where name like 'xxx%';
select count(id) from s1 where name like '%xxx'; # 慢 最左匹配特性 # 区分度低的字段不能建索引
drop index idx_name on s1; # 给id字段建普通的索引
create index idx_id on s1(id);
select count(id) from s1 where id = 3; # 快了
select count(id) from s1 where id*12 = 3; # 慢了 索引的字段一定不要参与计算 drop index idx_id on s1;
select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx';
# 针对上面这种连续多个and的操作,mysql会从左到右先找区分度比较高的索引字段,先将整体范围降下来再去比较其他条件
create index idx_name on s1(name);
select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx'; # 并没有加速 drop index idx_name on s1;
# 给name,gender这种区分度不高的字段加上索引并不难加快查询速度 create index idx_id on s1(id);
select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx'; # 快了 先通过id已经讲数据快速锁定成了一条了
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 慢了 基于id查出来的数据仍然很多,然后还要去比较其他字段 drop index idx_id on s1 create index idx_email on s1(email);
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 快 通过email字段一剑封喉

联合索引

select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx';
# 如果上述四个字段区分度都很高,那给谁建都能加速查询
# 给email加然而不用email字段
select count(id) from s1 where name='jason' and gender = 'male' and id > 3;
# 给name加然而不用name字段
select count(id) from s1 where gender = 'male' and id > 3;
# 给gender加然而不用gender字段
select count(id) from s1 where id > 3; # 带来的问题是所有的字段都建了索引然而都没有用到,还需要花费四次建立的时间
create index idx_all on s1(email,name,gender,id); # 最左匹配原则,区分度高的往左放
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 速度变快

慢查询日志:设定一个时间检测所有超出该时间的sql语句 然后针对性的进行优化

全文检索

MySQL的全文检索功能MYISAM存储引擎支持而InnoDB存储引擎不支持
一般在创建表的时候启用全文检索功能
create table t1(
id int primary key auto_increment,
content text
fulltext(content)
)engine=MyISAM; # match括号内的值必须是fulltext括号中定义的(单个或者多个)
select content from t1 where match(content) against('jason')
'''上述语句可以用like实现但是查询出来的结果顺序不同 全文检索会以文本匹配的良好程度排序数据再返回效果更佳''' # 查询扩展
select note_text from productnotes where Math(note_text) Against('jason' with query expansion);
"""
返回除jason外以及其他jason所在行相关文本内容行数据
eg:
jason is handsome and cool,every one want to be cool,tony want to be more handsome;
二三句虽然没有jason关键字 但是含有jason所在行的cool和handsome
""" # 布尔文本搜索
即使没有定义fulltext也可以使用,但是这种方式非常缓慢性能低下
select note_text from productnotes where Match(note_text) Against('jason' in boolean mode); # 注意事项
1.三个及三个以下字符的词视为短词,全文检索直接忽略且从索引中排除
2.MySQL自身自带一个非用词列表,表内词默认均被忽略(可以修改该列表)
3.出现频率高于50%的词自动作为非用词忽略,该规则不适用于布尔搜索
4.针对待搜索的文本内容不能少于三行,否则检索不返回任何结果
5.单引号默认忽略

插入数据

数据库经常被多个用户访问,insert操作可能会很耗时(特别是有很多索引需要更新的时候)而且还可能降低等待处理的select语句性能
如果数据检索是最重要的(一般都是),则可以通过在insert与into之间添加关键字low_priority指示MySQL降低insert语句优先级
insert low_priority into insert还可以将一条select语句的结果插入表中即数据导入:insert select
eg:想从custnew表中合并数据到customers表中
insert into customers(contact,email) select contact,email from custnew;

更新数据

如果使用update语句更新多列值,并且在更新这些列中的一列或者多列出现一个错误会导致整个update操作被取消,如果想发生错误也能继续执行没有错误的更新操作可以采用
update ignore custmoers ...
"""
update ignore set name='jason1',id='a' where id=1;
name字段正常修改
update set name='jason2',id='h' where id=1;
全部更新失败
"""

删除数据

delete语句从表中删除数据,甚至可以是所有数据但是不会删除表本身
并且如果想从表中删除所有的行不要使用delete可以使用truncate速度更快并且会重置主键值(实际是删除原来的表并重新创建一个表而不是逐行删除表中的数据)

主键

查看当前表主键自增到的值(表当前主键值减一)

select last_insert_id();

外键

MySQL存储引擎可以混用,但是外键不能跨引擎即使用一个引擎的表不能引用具有使用不同引擎表的外键

重命名表

rename关键字可以修改一个或者多个表名

rename table customer1 to customer2;
ranem table back_cust to b_cust,
back_cust1 to b_cust1,
back_cust2 to b_cust2;

事物

MySQL提供两种事务型存储引擎InnoDB和NDB cluster及第三方XtraDB、PBXT

事务处理中有几个关键词汇会反复出现
事务(transaction)
回退(rollback)
提交(commit)
保留点(savepoint)
为了支持回退部分事务处理,必须能在事务处理块中合适的位置放置占位符,这样如果需要回退可以回退到某个占位符(保留点)
创建占位符可以使用savepoint
savepoint sp01;
回退到占位符地址
rollback to sp01;
# 保留点在执行rollback或者commit之后自动释放

安全管理

1.创建用户
create user 用户名 identified by '密码';
"""修改密码"""
set password for 用户名 = Password('新密码');
set password = Password('新密码'); # 针对当前登录用户
2.重命名
rename user 新用户名 to 旧用户名;
3.删除用户
drop user 用户名;
4.查看用户访问权限
show grants for 用户名;
5.授予访问权限
grant select on db1.* to 用户名;
# 授予用户对db1数据库下所有表使用select权限
6.撤销权限
revoke select on db1.* from 用户名;
"""
整个服务器
grant all/revoke all
整个数据库
on db.*
特定的表
on db.t1
"""

隔离级别

在SQL标准中定义了四种隔离级别,每一种级别都规定了一个事务中所做的修改
InnoDB支持所有隔离级别
set transaction isolation level 级别 1.read uncommitted(未提交读)
事务中的修改即使没有提交,对其他事务也都是可见的,事务可以读取未提交的数据,这一现象也称之为"脏读"
2.read committed(提交读)
大多数数据库系统默认的隔离级别
一个事务从开始直到提交之前所作的任何修改对其他事务都是不可见的,这种级别也叫做"不可重复读"
3.repeatable read(可重复读) # 可重复读是MySQL默认隔离级别
能够解决"脏读"问题,但是无法解决"幻读"
所谓幻读指的是当某个事务在读取某个范围内的记录时另外一个事务又在该范围内插入了新的记录,当之前的事务再次读取该范围的记录会产生幻行,InnoDB和XtraDB通过多版本并发控制(MVCC)及间隙锁策略解决该问题
4.serializable(可串行读)
强制事务串行执行,很少使用该级别

读锁(共享锁)
多个用户同一时刻可以同时读取同一个资源互不干扰
写锁(排他锁)
一个写锁会阻塞其他的写锁和读锁
死锁
1.多个事务试图以不同的顺序锁定资源时就可能会产生死锁
2.多个事务同时锁定同一个资源时也会产生死锁
# Innodb通过将持有最少行级排他锁的事务回滚

事务日志

事务日志可以帮助提高事务的效率
存储引擎在修改表的数据时只需要修改其内存拷贝再把该修改记录到持久在硬盘上的事务日志中,而不用每次都将修改的数据本身持久到磁盘
事务日志采用的是追加方式因此写日志操作是磁盘上一小块区域内的顺序IO而不像随机IO需要次哦按的多个地方移动磁头所以采用事务日志的方式相对来说要快的多
事务日志持久之后内存中被修改的数据再后台可以慢慢刷回磁盘,目前大多数存储引擎都是这样实现的,通常称之为"预写式日志"修改数据需要写两次磁盘

MVCC多版本控制

MVCC只能在read committed(提交读)、repeatable read(可重复读)两种隔离级别下工作,其他两个不兼容(read uncommitted:总是读取最新  serializable:所有的行都加锁)

InnoDB的MVCC通过在每行记录后面保存两个隐藏的列来实现MVCC
一个列保存了行的创建时间
一个列保存了行的过期时间(或删除时间) # 本质是系统版本号
每开始一个新的事务版本号都会自动递增,事务开始时刻的系统版本号会作为事务的版本号用来和查询到的每行记录版本号进行比较 例如
刚插入第一条数据的时候,我们默认事务id为1,实际是这样存储的
username create_version delete_version
jason 1
可以看到,我们在content列插入了kobe这条数据,在create_version这列存储了1,1是这次插入操作的事务id。
然后我们将jason修改为jason01,实际存储是这样的
username create_version delete_version
jason 1 2
jason01 2
可以看到,update的时候,会先将之前的数据delete_version标记为当前新的事务id,也就是2,然后将新数据写入,将新数据的create_version标记为新的事务id
当我们删除数据的时候,实际存储是这样的
username create_version delete_version
jason01 2 3
"""
由此当我们查询一条记录的时候,只有满足以下两个条件的记录才会被显示出来:
1.当前事务id要大于或者等于当前行的create_version值,这表示在事务开始前这行数据已经存在了。
2.当前事务id要小于delete_version值,这表示在事务开始之后这行记录才被删除。
"""

转换表的引擎

主要有三种方式,并各有优缺点!
# 1.alter table
alter table t1 engine=InnoDB;
"""
适用于任何存储引擎 但是需要执行很长时间 MySQL会按行将数据从原表赋值到一张新的表中,在复制期间可能会消耗系统所有的IO能力,同时原表会加读锁
"""
# 2.导入导出
"""
使用mysqldump工具将数据导出到文件,然后修改文件中相应的SQL语句
1.引擎选项
2.表名
"""
# 3.insert ... select
"""
综合了第一种方案的高效和第二种方案的安全
1.先创建一张新的表
2.利用insert ... select语法导数据
数据量不大这样做非常合适 数据量大可以考虑分批处理 针对每一段数据执行事务提交操作避免产生过多的undo
"""
ps:上述操作可以使用pt-online-schema-change(基于facebook的在线schema变更技术)工具,简单方便的执行上述过程

数据库设计三大范式

为了保证数据库是简洁、结构清晰的,同时在对数据库操作的时候,比如插入、删除、更新等不会出现操作异常

设计范式:一种设计表的依据 按照这种范式设计出来的表不会出现数据冗余

有:

第一范式:任何一张表都应该有自己的主键 并且每一个字段的原子性都是不可分的

第二范式:在第一范式的基础上 要求所有的非主键字段完全依赖主键 不能产生部分依赖 解决办法就是多对多,三张表或者在设计的时候设定两个外键约束

第三范式:在第二范式的基础上 所有非主键只能依赖于主键 不能产生传递依赖 解决办法就是一对多或者建立两张表,多的表添加外键约束

完美符合三范式的数据库也比较少,为了满足客户的实际需求,常常会用数据冗余去换执行速度,就是鱼和熊掌的关系

SQL注入问题、视图、触发器、事物、存储过程、函数、流程控制、索引相关概念、索引数据结构、慢查询优化、的更多相关文章

  1. mysql 视图 触发器 事物 存储过程 函数 流程控制

    1.视图 *** 视图是有一条sql语句的查询结果构成的虚拟表 其不是物理存在的 使用方式与普通表相同 视图的作用1.简化sql语句的编写 2.限制可以查看的数据 可以使用权限来完成 权限某一个库 的 ...

  2. MySQL 视图 触发器 事务 存储过程 函数 流程控制 索引与慢查询优化

    视图 1.什么是视图? 视图就是通过查询得到的一张虚拟表,然后保存下来,下次可直接使用 2.为什么要使用视图? 如果要频繁使用一张虚拟表,可以不用重复查询 3.如何使用视图? create view ...

  3. MySQL——视图/触发器/事务/存储过程/函数/流程控制

    一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...

  4. python之路38 SQL注入问题 索引触发器 事务 存储过程 函数 流程控制

    SQL注入问题 怪像1:输对用户名就可以登录成功 怪像2:不需要对的用户名和密码也可以登录成功 SQL注入:利用特殊符号的组合产生特殊的含义 从而避开正常的业务逻辑 select * from use ...

  5. 视图,触发器,存储过程,流程控制等MySQL小知识点

    视图,触发器,存储过程,流程控制等MySQL小知识点 一.SQL注入问题 登录: import pymysql conn = pymysql.connect( host='127.0.0.1', po ...

  6. MySQL视图,触发器,事务,存储过程,函数

    create triggr triafterinsertcmdlog after insert on cmd_log FOR EACH ROW trigger_body .#NEW : 代表新的记录 ...

  7. python mysql 视图 触发器 事物 存储过程 用户授权 数据备份还原

    ###################总结########### 视图是一个虚拟表(非真实存在) 是跑在内存中的表,真实表是在硬盘上的表 使用视图我们可以把查询过程中的临时表摘出来,保存下来,用视图去 ...

  8. MySQL_视图/触发器/事务/存储过程/函数

    视图.触发器.事务.存储过程.函数 视图 视图是一个虚拟表(非真实存在),其本质是根据SQL语句获取动态的数据集,并为其命名,用户使用时只需使用名称即可获取结果集,可以将该结果集当作表来使用 #创建视 ...

  9. MySQL 视图触发器事务存储过程函数

    事务  致命三问 什么是事务:开启了一个包含多条SQL语句的事务,这些SQL语句要么都执行成功,要么有别想成功:例如A向B转账,二人账户并不属于一家银行,在转账过程中由于网络问题,导致A显示转账 成功 ...

  10. MySQL数据库(六) —— SQL注入攻击、视图、事物、存储过程、流程控制

    SQL注入攻击.视图.事物.存储过程.流程控制 一.SQL注入攻击 1.什么是SQL注入攻击 import pymysql conn = pymysql.Connect( user="roo ...

随机推荐

  1. PR中导入的照片在画面上只显示一部分的解决办法

    这是因为图片的分辨率太大导致的. 1.图片的分辨率大于PR工程的设置的时候,就会只显示局部. 2.可以用PS把图片先缩小为工程大小即可. 3.也可以把图片拖到时间线上,右键点击,缩放为帧大小即可. 这 ...

  2. 220501 T1 困难的图论 (tarjan 点双)

    求满足题目要求的简单环,做出图中所有的点双,用vector存储点双中的边,如果该点双满足点数=边数,就是我们想要的,求边的异或和即可:如果该点双点数小于边数,说明有不只一个环覆盖,不满足题意. 1 # ...

  3. python锦鲤

    今日内容目录 垃圾回收机制 流程控制理论& 流程控制之分支结构& 流程控制之循环结果& 详情 Python垃圾回收机制 """ 有一些语言,内存空 ...

  4. 故障复盘究竟怎么做?美图SRE结合10年经验做了三大总结(附模板)

    美图崇尚的故障文化是 "拥抱故障,卓越运维",倡导的基准是 No-Blame, 即「不指责,重改进」.今年 9 月 TakinTalks 社区曾经分享过美图的三段式故障治理方法(美 ...

  5. 结构体struct知识

    2022-10-12 08:52:03 //    结构体知识#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>#include<m ...

  6. Vue学习之--------列表排序(ffilter、sort、indexOf方法的使用)、Vue检测数据变化的原理(2022/7/15)

    文章目录 1.列表排序 1.1 .代码实例 1.2 .测试效果 1.3.需要掌握的前提知识 2.Vue监测数据变化的原理 2.1.代码实例 2.2 .测试效果 3.Vue检测数据的原理 3.1 基本知 ...

  7. 在vue项目中禁用eslint

    文章目录 1.在创建项目的时候不自动使用eslint 2.在package.json中删除所有的eslint,然后重新install 3.按照图片注释(亲测可用) 在使用eslin进行规则验证时,一点 ...

  8. 齐博x1齐博首创钩子的使用方法

    齐博X1有两套钩子体系,第一套是基于TP思路设计的.跟外面的大同小异.现在重点讲一下第二套我们首创的使用方法. 首先说一下如何埋钩子,这个跟TP思路的钩子类似,就是在页面的任何地方加入如下代码即可如下 ...

  9. Oracle数据库的两种授权收费方式介绍!

    首发微信公众号:SQL数据库运维 原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NTQyNzg3MQ==&mid=2247485212&idx=1 ...

  10. (数据科学学习手札146)geopandas中拓扑非法问题的发现、诊断与修复

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,geopandas作为在Pyt ...