Treap是一棵拥有键值、优先级两种权值的树

struct node{
int size;//以这个结点为根的子树的结点总数量,用于名次树
int rank;//优先级
int key;//键值
node *son[2];//son[0]是左儿子,son[1]是右儿子
bool operator<(const node &a)const{return rank<a.rank;}
int cmp(int x)const{
if(x==key) return -1;
return x<key?0:1;
}
void update(){//更新size
size=1;
if(son[0]!=NULL) size+=son[0]->size;
if(son[1]!=NULL) size+=son[1]->size;
}
};

1.唯一性

2.期望的插入、删除、查找的时间复杂度都是O(log2 n)

  查找

int find(node *o,int k){//返回元素k的名次
if(o==NULL) return -1;
int d=o->cmp(k);
if(d==-1) return o->son[1]==NULL?1:o->son[1]->size+1;
else if(d==1) return find(o->son[d],k);
else{
int tmp=find(o->son[d],k);
if(tmp==-1) return -1;
else return o->son[1]==NULL?tmp+1:tmp+1+o->son[1]->size;
}
}

3.插入

  

(灰色为先前位置)

  旋转代码

void rotate(node* &o,int d){      //d=0,左旋;d=1,右旋
node *k=o->son[d^1]; //d^1与1-d等价,但是更快
o->son[d^1]=k->son[d]; //图中的x
k->son[d]=o;
o=k; //返回新的根
}

4.删除

  调整至叶子结点后直接删除

void remove(node *&o,int x){
int d=o->cmp(x);
if(d==-1){
if(o->son[0]==NULL) o=o->son[1];
else if(o->son[1]==NULL) o=o->son[0];
else{
int d2=(o->son[0]>o->son[1]?1:0);
rotate(o,d2);
remove(o->son[d2],x);
}
}
else remove(o->son[d],x);
}

5.分裂与合并问题

6.Treap与名次树问题

  例题:hdu4585 "Shaolin"

  题解地址:https://www.cnblogs.com/ynzhang2020/p/15071130.html

百宝箱

 1 struct node{
2 int size;//以这个结点为根的子树的结点总数量,用于名次树
3 int rank;//优先级
4 int key;//键值
5 node *son[2];//son[0]是左儿子,son[1]是右儿子
6 bool operator<(const node &a)const{return rank<a.rank;}
7 int cmp(int x)const{
8 if(x==key) return -1;
9 return x<key?0:1;
10 }
11 void update(){//更新size
12 size=1;
13 if(son[0]!=NULL) size+=son[0]->size;
14 if(son[1]!=NULL) size+=son[1]->size;
15 }
16 };
17 void rotate(node *&o,int d){//d=0,左旋;d=1,右旋
18 node *k=o->son[d^1];//d^1与1-d等价,但是更快
19 o->son[d^1]=k->son[d];
20 k->son[d]=o;
21 o->update();
22 k->update();
23 o=k;
24 }
25 void insert(node *&o,int x){//把x插入到树中
26 if(o==NULL){
27 o=new node();
28 o->son[0]=o->son[1]=NULL;
29 o->rank=rand();
30 o->key=x;
31 o->size=1;
32 }
33 else{
34 int d=o->cmp(x);
35 insert(o->son[d],x);
36 o->update();
37 if(o<o->son[d]) rotate(o,d^1);
38 }
39 }
40 int kth(node *o,int k){//返回第k大的数
41 if(o==NULL||k<=0||k>o->size) return -1;
42 int s=o->son[1]==NULL?0:o->son[1]->size;
43 if(k==s+1) return o->key;
44 else if(k<=s) return kth(o->son[1],k);
45 else return kth(o->son[0],k-s-1);
46 }
47 int find(node *o,int k){//返回元素k的名次
48 if(o==NULL) return -1;
49 int d=o->cmp(k);
50 if(d==-1) return o->son[1]==NULL?1:o->son[1]->size+1;
51 else if(d==1) return find(o->son[d],k);
52 else{
53 int tmp=find(o->son[d],k);
54 if(tmp==-1) return -1;
55 else return o->son[1]==NULL?tmp+1:tmp+1+o->son[1]->size;
56 }
57 }

拿来吧你

二叉树系列之Treap树的更多相关文章

  1. 数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

    树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构.    a.树是n ...

  2. treap树---Double Queue

    HDU   1908 Description The new founded Balkan Investment Group Bank (BIG-Bank) opened a new office i ...

  3. Treap树

    Treap树算是一种简单的优化策略,这名字大家也能猜到,树和堆的合体,其实原理比较简单,在树中维护一个"优先级“,”优先级“ 采用随机数的方法,但是”优先级“必须满足根堆的性质,当然是“大根 ...

  4. 6天通吃树结构—— 第三天 Treap树

    原文:6天通吃树结构-- 第三天 Treap树 我们知道,二叉查找树相对来说比较容易形成最坏的链表情况,所以前辈们想尽了各种优化策略,包括AVL,红黑,以及今天 要讲的Treap树. Treap树算是 ...

  5. Treap树理解

    title: Treap树理解 comments: true date: 2016-10-06 07:57:37 categories: 算法 tags: Treap树 树 Treap树理解 简介 随 ...

  6. 二叉树系列 - 求两节点的最低公共祖先,例 剑指Offer 50

    前言 本篇是对二叉树系列中求最低公共祖先类题目的讨论. 题目 对于给定二叉树,输入两个树节点,求它们的最低公共祖先. 思考:这其实并不单单是一道题目,解题的过程中,要先弄清楚这棵二叉树有没有一些特殊的 ...

  7. POJ-3481 Double Queue,Treap树和set花式水过!

                                                    Double Queue 本打算学二叉树,单纯的二叉树感觉也就那几种遍历了, 无意中看到了这个题,然后就 ...

  8. bzoj2141 树状数组套Treap树

    题目大意是在能够改变两个数的位置的情况下计算逆序对数 这因为是动态记录逆序对 本来单纯逆序对只要用树状数组计算即可,但这里因为更新,所以利用TReap树的删点和增加点来进行更新 大致是把每个树状数组所 ...

  9. treap树模板

    ///treap树模板 typedef struct Node ///节点的结构体 { Node *l,*r; int val,pri; ///节点的值和优先级 int sz; ///节点子树的节点数 ...

  10. poj 2761 Feed the dogs (treap树)

    /************************************************************* 题目: Feed the dogs(poj 2761) 链接: http: ...

随机推荐

  1. Delphi 格式化函数Format、FormatDateTime与FormatFloat详解

    目录 Format函数 %d 代表一个整数 %u 代表一个无负号整数 %s 代表字符串 %f 代表浮点数(保留或凑够两位小数点 ) %g 代表浮点数(会去掉多余的 0) %n 代表浮点数(整数部分使用 ...

  2. docker停止所有窗容器

    docker中 启动所有的容器命令docker start $(docker ps -a | awk '{ print $1}' | tail -n +2) docker中 关闭所有的容器命令dock ...

  3. 13-之容器资源需求、资源限制及Metric-server(Heapster)

    目录 容器资源需求.资源限制及Heapster Heapster 资源指标API及自定义指标API k8s-promtheus监控部署 node-exporter prometheus kube-st ...

  4. supertv

    Banben:1.3BanbenendGengxinnr:死宅1.2更新内容:[换行]- 增加视频分享[换行]- 支持浏览器打开观看视频GengxinnrendDownurl:http://bmob- ...

  5. Windows打开回收站的几种方式

    1. 桌面双击回收站图标打开回收站,简单.快捷.方便,但在打开多个窗口时候还要最小化这些窗口以显示桌面,如果还要迅速恢复这些窗口的话也算是麻烦 2. 磁盘每个分区根目录下都有一个名称为$Recycle ...

  6. Rust智能指针

    Rust智能指针 https://course.rs/advance/smart-pointer/intro.html Box 堆对象分配 Box指针拥有内存对象的独占使用权 (一)使用场景 1. 使 ...

  7. clickhouse杂记

    1,clickhouse show tables SHOW [TEMPORARY] TABLES [FROM ] [LIKE ''] [LIMIT ] [INTO OUTFILE ] [FORMAT ...

  8. wsl 的 tail -f 不好使

    windows 上的sub linux ubuntu 的tail -f 不好使 在/etc/profile 中加入alias alias tailf='tail -f ---disable-inoti ...

  9. 服务器做bond,交换机做port-channel

    端口绑定的种类(具体介绍网上很多参考) balance-rr or 0 active-backup or 1 balance-xor or 2 broadcast or 3 802.3ad or 4 ...

  10. Qt 串口相关配置

    QSerialPort M_serialPort; QSerialPortInfo M_SerialPortInfo; void MainWindow::on_M_portNumComboBox_cu ...