题目链接在这里~

对于序列\(\{a\}\),把每一个\(a_i\)减去一个\(i\),得到\(\{a'\}\)序列\(\{b\}\)同理。

因为\(b_1<b_2<...<b_n\),故\(b_1'\leqslant b_2'\leqslant ... \leqslant b_n'\)

又\(a_i-b_i\)不变,故新问题与原问题等价。

因此我们就把问题就转化成了一个单调不下降序列。

我们将\(\{a_1, a_2, ..., a_m\}\)序列分成两段\(a_1...a_n\)\(a_{n+1}...a_m\)

假设\(b_1=b_2=...=b_n=u,b_{n+1}=b_{n+2}=... = b_{m}=v\)

则这个问题就变成了经典的邮递员问题,即货仓选址问题。

分类讨论:

  1. \(u\leqslant v\),则前半段取\(u\),后半段取\(v\)即为最优解。
  2. \(u > v\),则\(\frac{u+v}{2}\)(\(u,v\)的中位数)为最优解,用左偏树实现。

    得到了中位数之后还需要下压.

    那么其中有两种情况. 奇数个数的中位数, 和偶数个数的中位数(为了方便用cost表示a和b的差值的绝对值):

    1 奇数个数的中位数的时候就只能选这个中位数, 然后无论再往上或者往下压的cost都得增加至少1. 那么如果这个中位数的解如果不小于再往前一段的解的话, 则可以结束. 若小于, 则需要再往前合并找中位数循环直到结束

    2 偶数个数的中位数. 那么可以在中间2个数之间上下浮动:

    a. 如果再往前一段的解在这2个数之间, 则取再往前一段的解即可. 否则如果往上虽然不增加cost但是还能下压, 往下的话就得继续合并前一段增加cost.

    b. 如果再往前一段的解小于这个区间, 则直接选这2个数里面小的即可

    c. 如果再往前一段的解大于这个区间, 则还是选这2个数里面小的, 然后再往之前合并

code

#include <bits/stdc++.h>

typedef long long ll;

using namespace std;

const int N = 1e6 + 10;

int n, v[N], dist[N], l[N], r[N], ans[N], tt;
ll res; struct Segment{int end, root, size;}stk[N]; int merge(int x, int y)
{
if (!x || !y) return x + y;
if (v[x] < v[y]) swap(x, y);
r[x] = merge(r[x], y);
if (dist[r[x]] > dist[l[x]]) swap(r[x], l[x]);
dist[x] = dist[r[x]] + 1;
return x;
} int pop(int x){return merge(l[x], r[x]);} int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ )
{
scanf("%d", &v[i]);
v[i] -= i;
} for (int i = 1; i <= n; i ++ )
{
auto cur = Segment({i, i, 1});
dist[i] = 1;
while (tt && v[cur.root] < v[stk[tt].root])
{
cur.root = merge(cur.root, stk[tt].root);
if (cur.size % 2 && stk[tt].size % 2) cur.root = pop(cur.root);
cur.size += stk[tt].size, tt -- ;
}
stk[ ++ tt] = cur;
} for (int i = 1, j = 1; i <= tt; i ++ ) while (j <= stk[i].end) ans[j ++ ] = v[stk[i].root]; for (int i = 1; i <= n; i ++ ) res += abs(v[i] - ans[i]);
printf("%lld\n", res);
for (int i = 1; i <= n; i ++ ) printf("%d ", ans[i] + i); return 0;
}

BalticOI 2004 Sequence 题解的更多相关文章

  1. luogu 4331 [BalticOI 2004]Sequence 数字序列

    LINK:数字序列 这是一道论文题 我去看了一眼论文鸽的论文. 发现讲的还算能懂.可并堆的操作也讲的比较清晰. 对于这道题首先有一个小trick 我们给a数组全部减去其对应的下标这样我们求出来的b数组 ...

  2. 【CF486E】LIS of Sequence题解

    [CF486E]LIS of Sequence题解 题目链接 题意: 给你一个长度为n的序列a1,a2,...,an,你需要把这n个元素分成三类:1,2,3: 1:所有的最长上升子序列都不包含这个元素 ...

  3. 题解-BOI 2004 Sequence

    Problem bzoj & Luogu 题目大意: 给定序列\(\{a_i\}\),求一个严格递增序列\(\{b_i\}\),使得\(\sum \bigl |a_i-b_i\bigr|\)最 ...

  4. CF3D Least Cost Bracket Sequence 题解

    题目 This is yet another problem on regular bracket sequences. A bracket sequence is called regular, i ...

  5. POJ3581:Sequence——题解

    http://poj.org/problem?id=3581 给一串数,将其分成三个区间并且颠倒这三个区间,使得新数列字典序最小. 参考:http://blog.csdn.net/libin56842 ...

  6. BZOJ4355:Play with sequence——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4355 维护一个长度为N的序列a,现在有三种操作: 1)给出参数U,V,C,将a[U],a[U+1] ...

  7. Pop Sequence 题解

    Pop Sequence(PAT) https://www.nowcoder.com/pat/5/problem/4090 前言: PAT上一道Stack的应用题,简化版的有<信息学一本通·普及 ...

  8. CF524F And Yet Another Bracket Sequence 题解

    题目链接 算法:后缀数组+ST表+贪心   各路题解都没怎么看懂,只会常数巨大的后缀数组+ST表,最大点用时 \(4s\), 刚好可以过... 确定合法序列长度   首先一个括号序列是合法的必须满足以 ...

  9. 洛谷 P6573 [BalticOI 2017] Toll 题解

    Link 算是回归OI后第一道自己写的题(考CSP的时候可没回归) 写篇题解纪念一下 题目大意: \(n\) 个点,\(m\) 条单向边,每条边的两端点 \(x\),\(y\)必定满足 \(\left ...

  10. Codeforces 486E LIS of Sequence 题解

    题目大意: 一个序列,问其中每一个元素是否为所有最长上升子序列中的元素或是几个但不是所有最长上升子序列中的元素或一个最长上升子序列都不是. 思路: 求以每一个元素为开头和结尾的最长上升子序列长度,若两 ...

随机推荐

  1. Stanford CoreNLP无法生成实例对象

    在服务器上运行Stanford,今日无法启动"StanfordCoreNLP"了,就是运行下面代码一直在运行,不结束,不报错. from stanfordcorenlp impor ...

  2. pthread_mutex_t & pthread_cond_t 总结

    pthread_mutex_t & pthread_cond_t 总结 一.多线程并发 1.1 多线程并发引起的问题 我们先来看如下代码: #include <stdio.h> # ...

  3. Java注解(4):一个真实的Elasticsearch案例

    昨天把拼了一半的注解+Elasticsearch积木放下了,因为东西太多了拼不好,还容易乱.休息了一晚上接着来. 接着昨天,创建elasticsearch文档注解(相当于数据表的注解): /** * ...

  4. resutful的使用和增强版的swagger2

    1.REST的特征 统一接口:客户和服务器之间通信的方法必须统一,RESUTFUL风格的数据元操作CRUD分别对应HTTP方法----GET用来获取数据源,POST用来新建资源,PUT用来更新资源,, ...

  5. 齐博x1工单碎片模板制作教程

    可以把工单插入到任何频道的内容里边,如下图所示 碎片模板制作标准如下 <form action="{:urls('order/add')}" class="wn_f ...

  6. go-zero docker-compose 搭建课件服务(八):集成jaeger链路追踪

    0.转载 go-zero docker-compose 搭建课件服务(八):集成jaeger链路追踪 0.1源码地址 https://github.com/liuyuede123/go-zero-co ...

  7. 小菜鸡学习---<正则表达式学习笔记2>

    正则表达式学习笔记2 一.修饰符 前面我们学习的都是用于匹配的基本的关键的一些表达式符号,现在我们来学习修饰符.修饰符不写在正则表达式里,修饰符位于表达式之外,比如/runoob/g,这个最后的g就是 ...

  8. 自动化运维?看看Python怎样完成自动任务调度⛵

    作者:韩信子@ShowMeAI Python3◉技能提升系列:https://www.showmeai.tech/tutorials/56 本文地址:https://www.showmeai.tech ...

  9. hadoop配置day01

    hadoop 安装jdk 配置文件: sudo vim /etc/profile 配置文件: export JAVA_HOME=/home/hadoop/jvm/jdk1.8.0_341 export ...

  10. freeswitch的mod_curl模块

    概述 有时候,我们需要在呼叫的过程中,或过程后调用web api接口. freeswitch的mod_curl模块可以很方便的实现web api的接口调用. mod_curl模块默认不安装,需要进入模 ...