Spark详解(09) - Spark调优
Spark详解(09) - Spark调优
Spark 性能调优
常规性能调优
常规性能调优一:最优资源配置
Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。
资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如下所示:
- bin/spark-submit \
- --class com.zhangjk.spark.Analysis \
- --master yarn
- --deploy-mode cluster
- --num-executors 80 \
- --driver-memory 6g \
- --executor-memory 6g \
- --executor-cores 3 \
- /usr/opt/modules/spark/jar/spark.jar \
可以进行分配的资源如表所示:
名称 |
说明 |
--num-executors |
配置Executor的数量 |
--driver-memory |
配置Driver内存(影响不大) |
--executor-memory |
配置每个Executor的内存大小 |
--executor-cores |
配置每个Executor的CPU core数量 |
调节原则:尽量将任务分配的资源调节到可以使用的资源的最大限度。
对于具体资源的分配,分别讨论Spark的两种Cluster运行模式:
- 第一种是Spark Standalone模式,在提交任务前,一定知道或者可以从运维部门获取到可以使用的资源情况,在编写submit脚本的时候,就根据可用的资源情况进行资源的分配,比如说集群有15台机器,每台机器为8G内存,2个CPU core,那么就指定15个Executor,每个Executor分配8G内存,2个CPU core。
- 第二种是Spark Yarn模式,由于Yarn使用资源队列进行资源的分配和调度,在编写submit脚本的时候,就根据Spark作业要提交到的资源队列,进行资源的分配,比如资源队列有400G内存,100个CPU core,那么指定50个Executor,每个Executor分配8G内存,2个CPU core。
对各项资源进行了调节后,得到的性能提升会有如下表现:
增加Executor·个数
在资源允许的情况下,增加Executor的个数可以提高执行task的并行度。比如有4个Executor,每个Executor有2个CPU core,那么可以并行执行8个task,如果将Executor的个数增加到8个(资源允许的情况下),那么可以并行执行16个task,此时的并行能力提升了一倍。
增加每个Executor的CPU core个数
在资源允许的情况下,增加每个Executor的Cpu core个数,可以提高执行task的并行度。比如有4个Executor,每个Executor有2个CPU core,那么可以并行执行8个task,如果将每个Executor的CPU core个数增加到4个(资源允许的情况下),那么可以并行执行16个task,此时的并行能力提升了一倍。
增加每个Executor的内存量
在资源允许的情况下,增加每个Executor的内存量以后,对性能的提升有三点:
- 可以缓存更多的数据(即对RDD进行cache),写入磁盘的数据相应减少,甚至可以不写入磁盘,减少了可能的磁盘IO;
- 可以为shuffle操作提供更多内存,即有更多空间来存放reduce端拉取的数据,写入磁盘的数据相应减少,甚至可以不写入磁盘,减少了可能的磁盘IO;
- 可以为task的执行提供更多内存,在task的执行过程中可能创建很多对象,内存较小时会引发频繁的GC,增加内存后,可以避免频繁的GC,提升整体性能。
补充:生产环境Spark submit脚本配置
- bin/spark-submit \
- --class com.zhangjk.spark.WordCount \
- --master yarn\
- --deploy-mode cluster\
- --num-executors 80 \
- --driver-memory 6g \
- --executor-memory 6g \
- --executor-cores 3 \
- --queue root.default \
- --conf spark.yarn.executor.memoryOverhead=2048 \
- --conf spark.core.connection.ack.wait.timeout=300 \
- /usr/local/spark/spark.jar
参数配置参考值:
--num-executors:50~100
--driver-memory:1G~5G
--executor-memory:6G~10G
--executor-cores:3
--master:实际生产环境一定使用yarn
常规性能调优二:RDD优化
- RDD复用
在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算
对上图中的RDD计算架构进行修改,得到如下图所示的优化结果:
- RDD持久化
在Spark中,当多次对同一个RDD执行算子操作时,每一次都会对这个RDD以之前的父RDD重新计算一次,这种情况是必须要避免的,对同一个RDD的重复计算是对资源的极大浪费,因此,必须对多次使用的RDD进行持久化,通过持久化将公共RDD的数据缓存到内存/磁盘中,之后对于公共RDD的计算都会从内存/磁盘中直接获取RDD数据。
对于RDD的持久化,有两点需要说明:
- RDD的持久化是可以进行序列化的,当内存无法将RDD的数据完整的进行存放的时候,可以考虑使用序列化的方式减小数据体积,将数据完整存储在内存中。
- 如果对于数据的可靠性要求很高,并且内存充足,可以使用副本机制,对RDD数据进行持久化。当持久化启用了复本机制时,对于持久化的每个数据单元都存储一个副本,放在其他节点上面,由此实现数据的容错,一旦一个副本数据丢失,不需要重新计算,还可以使用另外一个副本。
- RDD尽可能早的filter操作
获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率。
常规性能调优三:并行度调节
Spark作业中的并行度指各个stage的task的数量。
如果并行度设置不合理而导致并行度过低,会导致资源的极大浪费,例如,20个Executor,每个Executor分配3个CPU core,而Spark作业有40个task,这样每个Executor分配到的task个数是2个,这就使得每个Executor有一个CPU core空闲,导致资源的浪费。
理想的并行度设置,应该是让并行度与资源相匹配,简单来说就是在资源允许的前提下,并行度要设置的尽可能大,达到可以充分利用集群资源。合理的设置并行度,可以提升整个Spark作业的性能和运行速度。
Spark官方推荐,task数量应该设置为Spark作业总CPU core数量的2~3倍。之所以没有推荐task数量与CPU core总数相等,是因为task的执行时间不同,有的task执行速度快而有的task执行速度慢,如果task数量与CPU core总数相等,那么执行快的task执行完成后,会出现CPU core空闲的情况。如果task数量设置为CPU core总数的2~3倍,那么一个task执行完毕后,CPU core会立刻执行下一个task,降低了资源的浪费,同时提升了Spark作业运行的效率。
Spark作业并行度的设置如下所示:
val conf = new SparkConf().set("spark.default.parallelism", "500")
常规性能调优四:广播大变量
默认情况下,task中的算子中如果使用了外部的变量,每个task都会获取一份变量的复本,这就造成了内存的极大消耗。一方面,如果后续对RDD进行持久化,可能就无法将RDD数据存入内存,只能写入磁盘,磁盘IO将会严重消耗性能;另一方面,task在创建对象的时候,也许会发现堆内存无法存放新创建的对象,这就会导致频繁的GC,GC会导致工作线程停止,进而导致Spark暂停工作一段时间,严重影响Spark性能。
假设当前任务配置了20个Executor,指定500个task,有一个20M的变量被所有task共用,此时会在500个task中产生500个副本,耗费集群10G的内存,如果使用了广播变量,
那么每个Executor保存一个副本,一共消耗400M内存,内存消耗减少了5倍。
广播变量在每个Executor保存一个副本,此Executor的所有task共用此广播变量,这让变量产生的副本数量大大减少。
在初始阶段,广播变量只在Driver中有一份副本。task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中尝试获取变量,如果本地没有,BlockManager就会从Driver或者其他节点的BlockManager上远程拉取变量的复本,并由本地的BlockManager进行管理;之后此Executor的所有task都会直接从本地的BlockManager中获取变量。
常规性能调优五:Kryo序列化
默认情况下,Spark使用Java的序列化机制。Java的序列化机制使用方便,不需要额外的配置,在算子中使用的变量实现Serializable接口即可,但是,Java序列化机制的效率不高,序列化速度慢并且序列化后的数据所占用的空间依然较大。
Kryo序列化机制比Java序列化机制性能提高10倍左右,Spark之所以没有默认使用Kryo作为序列化类库,是因为它不支持所有对象的序列化,同时Kryo需要用户在使用前注册需要序列化的类型,不够方便,但从Spark 2.0.0版本开始,简单类型、简单类型数组、字符串类型的Shuffling RDDs 已经默认使用Kryo序列化方式了。
- public class MyKryoRegistrator implements KryoRegistrator
- {
- @Override
- public void registerClasses(Kryo kryo)
- {
- kryo.register(StartupReportLogs.class);
- }
- }
配置Kryo序列化方式的实例代码:
//创建SparkConf对象
val conf =
new SparkConf().setMaster(…).setAppName(…)
//使用Kryo序列化库,如果要使用Java序列化库,需要把该行屏蔽掉
conf.set("spark.serializer",
"org.apache.spark.serializer.KryoSerializer");
//在Kryo序列化库中注册自定义的类集合,如果要使用Java序列化库,需要把该行屏蔽掉
conf.set("spark.kryo.registrator",
"atguigu.com.MyKryoRegistrator");
常规性能调优六:调节本地化等待时长
Spark作业运行过程中,Driver会对每一个stage的task进行分配。根据Spark的task分配算法,Spark希望task能够运行在它要计算的数据算在的节点(数据本地化思想),这样就可以避免数据的网络传输。通常来说,task可能不会被分配到它处理的数据所在的节点,因为这些节点可用的资源可能已经用尽,此时,Spark会等待一段时间,默认3s,如果等待指定时间后仍然无法在指定节点运行,那么会自动降级,尝试将task分配到比较差的本地化级别所对应的节点上,比如将task分配到离它要计算的数据比较近的一个节点,然后进行计算,如果当前级别仍然不行,那么继续降级。
当task要处理的数据不在task所在节点上时,会发生数据的传输。task会通过所在节点的BlockManager获取数据,BlockManager发现数据不在本地时,户通过网络传输组件从数据所在节点的BlockManager处获取数据。
网络传输数据的情况是不愿意看到的,大量的网络传输会严重影响性能,因此,希望通过调节本地化等待时长,如果在等待时长这段时间内,目标节点处理完成了一部分task,那么当前的task将有机会得到执行,这样就能够改善Spark作业的整体性能。
Spark的本地化等级如表所示:
名称 |
解析 |
PROCESS_LOCAL |
进程本地化,task和数据在同一个Executor中,性能最好。 |
NODE_LOCAL |
节点本地化,task和数据在同一个节点中,但是task和数据不在同一个Executor中,数据需要在进程间进行传输。 |
RACK_LOCAL |
机架本地化,task和数据在同一个机架的两个节点上,数据需要通过网络在节点之间进行传输。 |
NO_PREF |
对于task来说,从哪里获取都一样,没有好坏之分。 |
ANY |
task和数据可以在集群的任何地方,而且不在一个机架中,性能最差。 |
在Spark项目开发阶段,可以使用client模式对程序进行测试,此时,可以在本地看到比较全的日志信息,日志信息中有明确的task数据本地化的级别,如果大部分都是PROCESS_LOCAL,那么就无需进行调节,但是如果发现很多的级别都是NODE_LOCAL、ANY,那么需要对本地化的等待时长进行调节,通过延长本地化等待时长,看看task的本地化级别有没有提升,并观察Spark作业的运行时间有没有缩短。
注意,过犹不及,不要将本地化等待时长延长地过长,导致因为大量的等待时长,使得Spark作业的运行时间反而增加了。
Spark本地化等待时长的设置如代码所示:
val conf = new SparkConf().set("spark.locality.wait", "6")
算子调优
算子调优一:mapPartitions
普通的map算子对RDD中的每一个元素进行操作,而mapPartitions算子对RDD中每一个分区进行操作。如果是普通的map算子,假设一个partition有1万条数据,那么map算子中的function要执行1万次,也就是对每个元素进行操作。
如果是mapPartition算子,由于一个task处理一个RDD的partition,那么一个task只会执行一次function,function一次接收所有的partition数据,效率比较高。
比如,当要把RDD中的所有数据通过JDBC写入数据,如果使用map算子,那么需要对RDD中的每一个元素都创建一个数据库连接,这样对资源的消耗很大,如果使用mapPartitions算子,那么针对一个分区的数据,只需要建立一个数据库连接。
mapPartitions算子也存在一些缺点:对于普通的map操作,一次处理一条数据,如果在处理了2000条数据后内存不足,那么可以将已经处理完的2000条数据从内存中垃圾回收掉;但是如果使用mapPartitions算子,但数据量非常大时,function一次处理一个分区的数据,如果一旦内存不足,此时无法回收内存,就可能会OOM,即内存溢出。
因此,mapPartitions算子适用于数据量不是特别大的时候,此时使用mapPartitions算子对性能的提升效果还是不错的。(当数据量很大的时候,一旦使用mapPartitions算子,就会直接OOM)
在项目中,应该首先估算一下RDD的数据量、每个partition的数据量,以及分配给每个Executor的内存资源,如果资源允许,可以考虑使用mapPartitions算子代替map。
算子调优二:foreachPartition优化数据库操作
在生产环境中,通常使用foreachPartition算子来完成数据库的写入,通过foreachPartition算子的特性,可以优化写数据库的性能。
如果使用foreach算子完成数据库的操作,由于foreach算子是遍历RDD的每条数据,因此,每条数据都会建立一个数据库连接,这是对资源的极大浪费,因此,对于写数据库操作,应当使用foreachPartition算子。
与mapPartitions算子非常相似,foreachPartition是将RDD的每个分区作为遍历对象,一次处理一个分区的数据,也就是说,如果涉及数据库的相关操作,一个分区的数据只需要创建一次数据库连接,如图所示:
使用了foreachPartition算子后,可以获得以下的性能提升:
- 对于写的function函数,一次处理一整个分区的数据;
- 对于一个分区内的数据,创建唯一的数据库连接;
- 只需要向数据库发送一次SQL语句和多组参数;
在生产环境中,全部都会使用foreachPartition算子完成数据库操作。foreachPartition算子存在一个问题,与mapPartitions算子类似,如果一个分区的数据量特别大,可能会造成OOM,即内存溢出。
算子调优三:filter与coalesce的配合使用
在Spark任务中经常会使用filter算子完成RDD中数据的过滤,在任务初始阶段,从各个分区中加载到的数据量是相近的,但是一旦进过filter过滤后,每个分区的数据量有可能会存在较大差异,如图所示:
根据图中信息可以发现两个问题:
- 每个partition的数据量变小了,如果还按照之前与partition相等的task个数去处理当前数据,有点浪费task的计算资源;
- 每个partition的数据量不一样,会导致后面的每个task处理每个partition数据的时候,每个task要处理的数据量不同,这很有可能导致数据倾斜问题。
如上图所示,第二个分区的数据过滤后只剩100条,而第三个分区的数据过滤后剩下800条,在相同的处理逻辑下,第二个分区对应的task处理的数据量与第三个分区对应的task处理的数据量差距达到了8倍,这也会导致运行速度可能存在数倍的差距,这也就是数据倾斜问题。
针对上述的两个问题,分别进行分析:
- 针对第一个问题,既然分区的数据量变小了,希望可以对分区数据进行重新分配,比如将原来4个分区的数据转化到2个分区中,这样只需要用后面的两个task进行处理即可,避免了资源的浪费。
- 针对第二个问题,解决方法和第一个问题的解决方法非常相似,对分区数据重新分配,让每个partition中的数据量差不多,这就避免了数据倾斜问题。
那么具体应该如何实现上面的解决思路?我们需要coalesce算子。
repartition与coalesce都可以用来进行重分区,其中repartition只是coalesce接口中shuffle为true的简易实现,coalesce默认情况下不进行shuffle,但是可以通过参数进行设置。
假设希望将原本的分区个数A通过重新分区变为B,那么有以下几种情况:
A > B(多数分区合并为少数分区)
- A与B相差值不大
此时使用coalesce即可,无需shuffle过程。
- A与B相差值很大
此时可以使用coalesce并且不启用shuffle过程,但是会导致合并过程性能低下,所以推荐设置coalesce的第二个参数为true,即启动shuffle过程。
A < B(少数分区分解为多数分区)
此时使用repartition即可,如果使用coalesce需要将shuffle设置为true,否则coalesce无效。
可以在filter操作之后,使用coalesce算子针对每个partition的数据量各不相同的情况,压缩partition的数量,而且让每个partition的数据量尽量均匀紧凑,以便于后面的task进行计算操作,在某种程度上能够在一定程度上提升性能。
注意:local模式是进程内模拟集群运行,已经对并行度和分区数量有了一定的内部优化,因此不用去设置并行度和分区数量。
算子调优四:repartition解决SparkSQL低并行度问题
在常规性能调优中讲解了并行度的调节策略,但是,并行度的设置对于Spark SQL是不生效的,用户设置的并行度只对于Spark SQL以外的所有Spark的stage生效。
Spark SQL的并行度不允许用户自己指定,Spark SQL自己会默认根据hive表对应的HDFS文件的split个数自动设置Spark SQL所在的那个stage的并行度,用户自己通过spark.default.parallelism参数指定的并行度,只会在没Spark SQL的stage中生效。
由于Spark SQL所在stage的并行度无法手动设置,如果数据量较大,并且此stage中后续的transformation操作有着复杂的业务逻辑,而Spark SQL自动设置的task数量很少,这就意味着每个task要处理为数不少的数据量,然后还要执行非常复杂的处理逻辑,这就可能表现为第一个有Spark SQL的stage速度很慢,而后续的没有Spark SQL的stage运行速度非常快。
为了解决Spark SQL无法设置并行度和task数量的问题,可以使用repartition算子。
Spark SQL这一步的并行度和task数量肯定是没有办法去改变了,但是,对于Spark SQL查询出来的RDD,立即使用repartition算子,去重新进行分区,这样可以重新分区为多个partition,从repartition之后的RDD操作,由于不再涉及Spark SQL,因此stage的并行度就会等于你手动设置的值,这样就避免了Spark SQL所在的stage只能用少量的task去处理大量数据并执行复杂的算法逻辑。
算子调优五:reduceByKey预聚合
reduceByKey相较于普通的shuffle操作一个显著的特点就是会进行map端的本地聚合,map端会先对本地的数据进行combine操作,然后将数据写入给下个stage的每个task创建的文件中,也就是在map端,对每一个key对应的value,执行reduceByKey算子函数。reduceByKey算子的执行过程如图所示:
使用reduceByKey对性能的提升如下:
- 本地聚合后,在map端的数据量变少,减少了磁盘IO,也减少了对磁盘空间的占用;
- 本地聚合后,下一个stage拉取的数据量变少,减少了网络传输的数据量;
- 本地聚合后,在reduce端进行数据缓存的内存占用减少;
- 本地聚合后,在reduce端进行聚合的数据量减少。
基于reduceByKey的本地聚合特征,应该考虑使用reduceByKey代替其他的shuffle算子,例如groupByKey。
reduceByKey与groupByKey的运行原理如图所示:
groupByKey原理:
reduceByKey原理:
根据上图可知,groupByKey不会进行map端的聚合,而是将所有map端的数据shuffle到reduce端,然后在reduce端进行数据的聚合操作。由于reduceByKey有map端聚合的特性,使得网络传输的数据量减小,因此效率要明显高于groupByKey。
Shuffle调优
Shuffle调优一:调节map端缓冲区大小
在Spark任务运行过程中,如果shuffle的map端处理的数据量比较大,但是map端缓冲的大小是固定的,可能会出现map端缓冲数据频繁spill溢写到磁盘文件中的情况,使得性能非常低下,通过调节map端缓冲的大小,可以避免频繁的磁盘IO操作,进而提升Spark任务的整体性能。
map端缓冲的默认配置是32KB,如果每个task处理640KB的数据,那么会发生640/32 = 20次溢写,如果每个task处理64000KB的数据,机会发生64000/32=2000此溢写,这对于性能的影响是非常严重的。
map端缓冲的配置方法如代码清单所示:
val conf = new SparkConf().set("spark.shuffle.file.buffer", "64")
Shuffle调优二:调节reduce端拉取数据缓冲区大小
Spark Shuffle过程中,shuffle reduce task的buffer缓冲区大小决定了reduce task每次能够缓冲的数据量,也就是每次能够拉取的数据量,如果内存资源较为充足,适当增加拉取数据缓冲区的大小,可以减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。
reduce端数据拉取缓冲区的大小可以通过spark.reducer.maxSizeInFlight参数进行设置,默认为48MB,该参数的设置方法如代码清单所示:
val conf = new SparkConf().set("spark.reducer.maxSizeInFlight", "96")
Shuffle调优三:调节reduce端拉取数据重试次数
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试。对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
reduce端拉取数据重试次数可以通过spark.shuffle.io.maxRetries参数进行设置,该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败,默认为3,该参数的设置方法如代码清单所示:
val conf = new SparkConf().set("spark.shuffle.io.maxRetries", "6")
Shuffle调优四:调节reduce端拉取数据等待间隔
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试,在一次失败后,会等待一定的时间间隔再进行重试,可以通过加大间隔时长(比如60s),以增加shuffle操作的稳定性。
reduce端拉取数据等待间隔可以通过spark.shuffle.io.retryWait参数进行设置,默认值为5s,该参数的设置方法如代码清单所示:
val conf = new SparkConf().set("spark.shuffle.io.retryWait", "60s")
1.3.5 Shuffle调优五:调节SortShuffle排序操作阈值
对于SortShuffleManager,如果shuffle reduce task的数量小于某一阈值则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
当使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量,那么此时map-side就不会进行排序了,减少了排序的性能开销,但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
SortShuffleManager排序操作阈值的设置可以通过spark.shuffle.sort. bypassMergeThreshold这一参数进行设置,默认值为200,该参数的设置方法如代码清单所示:
val conf = new SparkConf().set("spark.shuffle.sort.bypassMergeThreshold", "400")
JVM调优
对于JVM调优,首先应该明确,full gc/minor gc,都会导致JVM的工作线程停止工作,即stop the world。
JVM调优一:降低cache操作的内存占比
1. 静态内存管理机制
根据Spark静态内存管理机制,堆内存被划分为了两块,Storage和Execution。Storage主要用于缓存RDD数据和broadcast数据,Execution主要用于缓存在shuffle过程中产生的中间数据,Storage占系统内存的60%,Execution占系统内存的20%,并且两者完全独立。
在一般情况下,Storage的内存都提供给了cache操作,但是如果在某些情况下cache操作内存不是很紧张,而task的算子中创建的对象很多,Execution内存又相对较小,这会导致频繁的minor gc,甚至于频繁的full gc,进而导致Spark频繁的停止工作,性能影响会很大。
在Spark UI中可以查看每个stage的运行情况,包括每个task的运行时间、gc时间等等,如果发现gc太频繁,时间太长,就可以考虑调节Storage的内存占比,让task执行算子函数式,有更多的内存可以使用。
Storage内存区域可以通过spark.storage.memoryFraction参数进行指定,默认为0.6,即60%,可以逐级向下递减,如代码清单所示:
val conf = new SparkConf().set("spark.storage.memoryFraction", "0.4")
2. 统一内存管理机制
根据Spark统一内存管理机制,堆内存被划分为了两块,Storage和Execution。Storage主要用于缓存数据,Execution主要用于缓存在shuffle过程中产生的中间数据,两者所组成的内存部分称为统一内存,Storage和Execution各占统一内存的50%,由于动态占用机制的实现,shuffle过程需要的内存过大时,会自动占用Storage的内存区域,因此无需手动进行调节。
JVM调优二:调节Executor堆外内存
Executor的堆外内存主要用于程序的共享库、Perm Space、
线程Stack和一些Memory mapping等, 或者类C方式allocate object。
有时,如果你的Spark作业处理的数据量非常大,达到几亿的数据量,此时运行Spark作业会时不时地报错,例如shuffle output file cannot find,executor lost,task lost,out of memory等,这可能是Executor的堆外内存不太够用,导致Executor在运行的过程中内存溢出。
stage的task在运行的时候,可能要从一些Executor中去拉取shuffle map output文件,但是Executor可能已经由于内存溢出挂掉了,其关联的BlockManager也没有了,这就可能会报出shuffle output file cannot find,executor lost,task lost,out of memory等错误,此时,就可以考虑调节一下Executor的堆外内存,也就可以避免报错,与此同时,堆外内存调节的比较大的时候,对于性能来讲,也会带来一定的提升。
默认情况下,Executor堆外内存上限大概为300多MB,在实际的生产环境下,对海量数据进行处理的时候,这里都会出现问题,导致Spark作业反复崩溃,无法运行,此时就会去调节这个参数,到至少1G,甚至于2G、4G。
Executor堆外内存的配置需要在spark-submit脚本里配置,如代码清单所示:
--conf spark.yarn.executor.memoryOverhead=2048
以上参数配置完成后,会避免掉某些JVM OOM的异常问题,同时,可以提升整体Spark作业的性能。
JVM调优三:调节连接等待时长
在Spark作业运行过程中,Executor优先从自己本地关联的BlockManager中获取某份数据,如果本地BlockManager没有的话,会通过TransferService远程连接其他节点上Executor的BlockManager来获取数据。
如果task在运行过程中创建大量对象或者创建的对象较大,会占用大量的内存,这回导致频繁的垃圾回收,但是垃圾回收会导致工作现场全部停止,也就是说,垃圾回收一旦执行,Spark的Executor进程就会停止工作,无法提供相应,此时,由于没有响应,无法建立网络连接,会导致网络连接超时。
在生产环境下,有时会遇到file not found、file lost这类错误,在这种情况下,很有可能是Executor的BlockManager在拉取数据的时候,无法建立连接,然后超过默认的连接等待时长60s后,宣告数据拉取失败,如果反复尝试都拉取不到数据,可能会导致Spark作业的崩溃。这种情况也可能会导致DAGScheduler反复提交几次stage,TaskScheduler返回提交几次task,大大延长了我们的Spark作业的运行时间。
此时,可以考虑调节连接的超时时长,连接等待时长需要在spark-submit脚本中进行设置,设置方式如代码清单所示:
--conf spark.core.connection.ack.wait.timeout=300
调节连接等待时长后,通常可以避免部分的XX文件拉取失败、XX文件lost等报错。
Spark数据倾斜
Spark中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题。
例如,reduce点一共要处理100万条数据,第一个和第二个task分别被分配到了1万条数据,计算5分钟内完成,第三个task分配到了98万数据,此时第三个task可能需要10个小时完成,这使得整个Spark作业需要10个小时才能运行完成,这就是数据倾斜所带来的后果。
注意,要区分开数据倾斜与数据量过量这两种情况,数据倾斜是指少数task被分配了绝大多数的数据,因此少数task运行缓慢;数据过量是指所有task被分配的数据量都很大,相差不多,所有task都运行缓慢。
数据倾斜的表现:
- Spark作业的大部分task都执行迅速,只有有限的几个task执行的非常慢,此时可能出现了数据倾斜,作业可以运行,但是运行得非常慢;
- Spark作业的大部分task都执行迅速,但是有的task在运行过程中会突然报出OOM,反复执行几次都在某一个task报出OOM错误,此时可能出现了数据倾斜,作业无法正常运行。
定位数据倾斜问题:
- 查阅代码中的shuffle算子,例如reduceByKey、countByKey、groupByKey、join等算子,根据代码逻辑判断此处是否会出现数据倾斜;
- 查看Spark作业的log文件,log文件对于错误的记录会精确到代码的某一行,可以根据异常定位到的代码位置来明确错误发生在第几个stage,对应的shuffle算子是哪一个;
解决方案一:聚合原数据
- 避免shuffle过程
绝大多数情况下,Spark作业的数据来源都是Hive表,这些Hive表基本都是经过ETL之后的昨天的数据。为了避免数据倾斜,可以考虑避免shuffle过程,如果避免了shuffle过程,那么从根本上就消除了发生数据倾斜问题的可能。
如果Spark作业的数据来源于Hive表,那么可以先在Hive表中对数据进行聚合,例如按照key进行分组,将同一key对应的所有value用一种特殊的格式拼接到一个字符串里去,这样,一个key就只有一条数据了;之后,对一个key的所有value进行处理时,只需要进行map操作即可,无需再进行任何的shuffle操作。通过上述方式就避免了执行shuffle操作,也就不可能会发生任何的数据倾斜问题。
对于Hive表中数据的操作,不一定是拼接成一个字符串,也可以是直接对key的每一条数据进行累计计算。
要区分开,处理的数据量大和数据倾斜的区别。
- 缩小key粒度(增大数据倾斜可能性,降低每个task的数据量)
key的数量增加,可能使数据倾斜更严重。
- 增大key粒度(减小数据倾斜可能性,增大每个task的数据量)
如果没有办法对每个key聚合出来一条数据,在特定场景下,可以考虑扩大key的聚合粒度。
例如,目前有10万条用户数据,当前key的粒度是(省,城市,区,日期),现在我虑扩大粒度,将key的粒度扩大为(省,城市,日期),这样的话,key的数量会减少,key之间的数据量差异也有可能会减少,由此可以减轻数据倾斜的现象和问题。(此方法只针对特定类型的数据有效,当应用场景不适宜时,会加重数据倾斜)
解决方案二:过滤导致倾斜的key
如果在Spark作业中允许丢弃某些数据,那么可以考虑将可能导致数据倾斜的key进行过滤,滤除可能导致数据倾斜的key对应的数据,这样,在Spark作业中就不会发生数据倾斜了。
解决方案三:提高shuffle操作中的reduce并行度
当方案一和方案二对于数据倾斜的处理没有很好的效果时,可以考虑提高shuffle过程中的reduce端并行度,reduce端并行度的提高就增加了reduce端task的数量,那么每个task分配到的数据量就会相应减少,由此缓解数据倾斜问题。
- reduce端并行度的设置
在大部分的shuffle算子中,都可以传入一个并行度的设置参数,比如reduceByKey(500),这个参数会决定shuffle过程中reduce端的并行度,在进行shuffle操作的时候,就会对应着创建指定数量的reduce task。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小。
增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。
- reduce端并行度设置存在的缺陷
提高reduce端并行度并没有从根本上改变数据倾斜的本质和问题(方案一和方案二从根本上避免了数据倾斜的发生),只是尽可能地去缓解和减轻shuffle reduce task的数据压力,以及数据倾斜的问题,适用于有较多key对应的数据量都比较大的情况。
该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。
在理想情况下,reduce端并行度提升后,会在一定程度上减轻数据倾斜的问题,甚至基本消除数据倾斜;但是,在一些情况下,只会让原来由于数据倾斜而运行缓慢的task运行速度稍有提升,或者避免了某些task的OOM问题,但是,仍然运行缓慢,此时,要及时放弃方案三,开始尝试后面的方案四。
解决方案四:使用随机key实现双重聚合
当使用了类似于groupByKey、reduceByKey这样的算子时,可以考虑使用随机key实现双重聚合,如图所示:
首先,通过map算子给每个数据的key添加随机数前缀,对key进行打散,将原先一样的key变成不一样的key,然后进行第一次聚合,这样就可以让原本被一个task处理的数据分散到多个task上去做局部聚合;随后,去除掉每个key的前缀,再次进行聚合。
此方法对于由groupByKey、reduceByKey这类算子造成的数据倾斜由比较好的效果,仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。
此方法也是前几种方案没有比较好的效果时要尝试的解决方案。
解决方案五:将reduce join转换为map join
正常情况下,join操作都会执行shuffle过程,并且执行的是reduce join,也就是先将所有相同的key和对应的value汇聚到一个reduce task中,然后再进行join。普通join的过程如下图所示:
普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。
(注意,RDD是并不能进行广播的,只能将RDD内部的数据通过collect拉取到Driver内存然后再进行广播)
核心思路:
不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。
根据上述思路,根本不会发生shuffle操作,从根本上杜绝了join操作可能导致的数据倾斜问题。
当join操作有数据倾斜问题并且其中一个RDD的数据量较小时,可以优先考虑这种方式,效果非常好。map join的过程如图所示:
不适用场景分析:
由于Spark的广播变量是在每个Executor中保存一个副本,如果两个RDD数据量都比较大,那么如果将一个数据量比较大的 RDD做成广播变量,那么很有可能会造成内存溢出。
解决方案六:sample采样对倾斜key单独进行join
在Spark中,如果某个RDD只有一个key,那么在shuffle过程中会默认将此key对应的数据打散,由不同的reduce端task进行处理。
当由单个key导致数据倾斜时,可有将发生数据倾斜的key单独提取出来,组成一个RDD,然后用这个原本会导致倾斜的key组成的RDD根其他RDD单独join,此时,根据Spark的运行机制,此RDD中的数据会在shuffle阶段被分散到多个task中去进行join操作。倾斜key单独join的流程如图所示:
- 适用场景分析:
对于RDD中的数据,可以将其转换为一个中间表,或者是直接使用countByKey()的方式,看一个这个RDD中各个key对应的数据量,此时如果你发现整个RDD就一个key的数据量特别多,那么就可以考虑使用这种方法。
当数据量非常大时,可以考虑使用sample采样获取10%的数据,然后分析这10%的数据中哪个key可能会导致数据倾斜,然后将这个key对应的数据单独提取出来。
- 不适用场景分析:
如果一个RDD中导致数据倾斜的key很多,那么此方案不适用。
解决方案七:使用随机数扩容进行join
如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了,对于join操作,可以考虑对其中一个RDD数据进行扩容,另一个RDD进行稀释后再join。
将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的"不同key"分散到多个task中去处理,而不是让一个task处理大量的相同key。这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,需要对整个RDD进行数据扩容,对内存资源要求很高。
1. 核心思想:
选择一个RDD,使用flatMap进行扩容,对每条数据的key添加数值前缀(1~N的数值),将一条数据映射为多条数据;(扩容)
选择另外一个RDD,进行map映射操作,每条数据的key都打上一个随机数作为前缀(1~N的随机数);(稀释)
将两个处理后的RDD,进行join操作。
2. 局限性:
如果两个RDD都很大,那么将RDD进行N倍的扩容显然行不通;
使用扩容的方式只能缓解数据倾斜,不能彻底解决数据倾斜问题。
使用方案七对方案六进一步优化分析:
当RDD中有几个key导致数据倾斜时,方案六不再适用,而方案七又非常消耗资源,此时可以引入方案七的思想完善方案六:
- 对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。
- 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。
- 接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。
- 再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。
- 而另外两个普通的RDD就照常join即可。
- 最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。
Spark故障排除
故障排除一:控制reduce端缓冲大小以避免OOM
在Shuffle过程,reduce端task并不是等到map端task将其数据全部写入磁盘后再去拉取,而是map端写一点数据,reduce端task就会拉取一小部分数据,然后立即进行后面的聚合、算子函数的使用等操作。
reduce端task能够拉取多少数据,由reduce拉取数据的缓冲区buffer来决定,因为拉取过来的数据都是先放在buffer中,然后再进行后续的处理,buffer的默认大小为48MB。
reduce端task会一边拉取一边计算,不一定每次都会拉满48MB的数据,可能大多数时候拉取一部分数据就处理掉了。
虽然说增大reduce端缓冲区大小可以减少拉取次数,提升Shuffle性能,但是有时map端的数据量非常大,写出的速度非常快,此时reduce端的所有task在拉取的时候,有可能全部达到自己缓冲的最大极限值,即48MB,此时,再加上reduce端执行的聚合函数的代码,可能会创建大量的对象,这可难会导致内存溢出,即OOM。
如果一旦出现reduce端内存溢出的问题,我们可以考虑减小reduce端拉取数据缓冲区的大小,例如减少为12MB。
在实际生产环境中是出现过这种问题的,这是典型的以性能换执行的原理。reduce端拉取数据的缓冲区减小,不容易导致OOM,但是相应的,reudce端的拉取次数增加,造成更多的网络传输开销,造成性能的下降。
注意,要保证任务能够运行,再考虑性能的优化。
故障排除二:JVM GC导致的shuffle文件拉取失败
在Spark作业中,有时会出现shuffle file not found的错误,这是非常常见的一个报错,有时出现这种错误以后,选择重新执行一遍,就不再报出这种错误。
出现上述问题可能的原因是Shuffle操作中,后面stage的task想要去上一个stage的task所在的Executor拉取数据,结果对方正在执行GC,执行GC会导致Executor内所有的工作现场全部停止,比如BlockManager、基于netty的网络通信等,这就会导致后面的task拉取数据拉取了半天都没有拉取到,就会报出shuffle file not found的错误,而第二次再次执行就不会再出现这种错误。
可以通过调整reduce端拉取数据重试次数和reduce端拉取数据时间间隔这两个参数来对Shuffle性能进行调整,增大参数值,使得reduce端拉取数据的重试次数增加,并且每次失败后等待的时间间隔加长。
val conf = new SparkConf()
.set("spark.shuffle.io.maxRetries", "60")
.set("spark.shuffle.io.retryWait", "60s")
故障排除三:解决各种序列化导致的报错
当Spark作业在运行过程中报错,而且报错信息中含有Serializable等类似词汇,那么可能是序列化问题导致的报错。
序列化问题要注意以下三点:
- 作为RDD的元素类型的自定义类,必须是可以序列化的;
- 算子函数里可以使用的外部的自定义变量,必须是可以序列化的;
- 不可以在RDD的元素类型、算子函数里使用第三方的不支持序列化的类型,例如Connection。
故障排除四:解决算子函数返回NULL导致的问题
在一些算子函数里,需要有一个返回值,但是在一些情况下不希望有返回值,此时如果直接返回NULL,会报错,例如Scala.Math(NULL)异常。
如果你遇到某些情况,不希望有返回值,那么可以通过下述方式解决:
- 返回特殊值,不返回NULL,例如"-1";
- 在通过算子获取到了一个RDD之后,可以对这个RDD执行filter操作,进行数据过滤,将数值为-1的数据给过滤掉;
- 在使用完filter算子后,继续调用coalesce算子进行优化。
故障排除五:解决YARN-CLIENT模式导致的网卡流量激增问题
YARN-client模式的运行原理如下图所示:
在YARN-client模式下,Driver启动在本地机器上,而Driver负责所有的任务调度,需要与YARN集群上的多个Executor进行频繁的通信。
假设有100个Executor, 1000个task,那么每个Executor分配到10个task,之后,Driver要频繁地跟Executor上运行的1000个task进行通信,通信数据非常多,并且通信品类特别高。这就导致有可能在Spark任务运行过程中,由于频繁大量的网络通讯,本地机器的网卡流量会激增。
注意,YARN-client模式只会在测试环境中使用,而之所以使用YARN-client模式,是由于可以看到详细全面的log信息,通过查看log,可以锁定程序中存在的问题,避免在生产环境下发生故障。
在生产环境下,使用的一定是YARN-cluster模式。在YARN-cluster模式下,就不会造成本地机器网卡流量激增问题,如果YARN-cluster模式下存在网络通信的问题,需要运维团队进行解决。
故障排除六:解决YARN-CLUSTER模式的JVM栈内存溢出无法执行问题
YARN-cluster模式的运行原理如下图所示:
当Spark作业中包含SparkSQL的内容时,可能会碰到YARN-client模式下可以运行,但是YARN-cluster模式下无法提交运行(报出OOM错误)的情况。
YARN-client模式下,Driver是运行在本地机器上的,Spark使用的JVM的PermGen的配置,是本地机器上的spark-class文件,JVM永久代的大小是128MB,这个是没有问题的,但是在YARN-cluster模式下,Driver运行在YARN集群的某个节点上,使用的是没有经过配置的默认设置,PermGen永久代大小为82MB。
SparkSQL的内部要进行很复杂的SQL的语义解析、语法树转换等等,非常复杂,如果sql语句本身就非常复杂,那么很有可能会导致性能的损耗和内存的占用,特别是对PermGen的占用会比较大。
所以,此时如果PermGen的占用超过了82MB,但是又小于128MB,就会出现YARN-client模式下可以运行,YARN-cluster模式下无法运行的情况。
解决上述问题的方法时增加PermGen的容量,需要在spark-submit脚本中对相关参数进行设置,设置方法如代码清单所示。
--conf spark.driver.extraJavaOptions="-XX:PermSize=128M -XX:MaxPermSize=256M"
通过上述方法就设置了Driver永久代的大小,默认为128MB,最大256MB,这样就可以避免上面所说的问题。
故障排除七:解决SparkSQL导致的JVM栈内存溢出
当SparkSQL的sql语句有成百上千的or关键字时,就可能会出现Driver端的JVM栈内存溢出。
JVM栈内存溢出基本上就是由于调用的方法层级过多,产生了大量的,非常深的,超出了JVM栈深度限制的递归。(猜测SparkSQL有大量or语句的时候,在解析SQL时,例如转换为语法树或者进行执行计划的生成的时候,对于or的处理是递归,or非常多时,会发生大量的递归)
此时,建议将一条sql语句拆分为多条sql语句来执行,每条sql语句尽量保证100个以内的子句。根据实际的生产环境试验,一条sql语句的or关键字控制在100个以内,通常不会导致JVM栈内存溢出。
故障排除八:持久化与checkpoint的使用
Spark持久化在大部分情况下是没有问题的,但是有时数据可能会丢失,如果数据一旦丢失,就需要对丢失的数据重新进行计算,计算完后再缓存和使用,为了避免数据的丢失,可以选择对这个RDD进行checkpoint,也就是将数据持久化一份到容错的文件系统上(比如HDFS)。
一个RDD缓存并checkpoint后,如果一旦发现缓存丢失,就会优先查看checkpoint数据存不存在,如果有,就会使用checkpoint数据,而不用重新计算。也即是说,checkpoint可以视为cache的保障机制,如果cache失败,就使用checkpoint的数据。
使用checkpoint的优点在于提高了Spark作业的可靠性,一旦缓存出现问题,不需要重新计算数据,缺点在于,checkpoint时需要将数据写入HDFS等文件系统,对性能的消耗较大。
Spark详解(09) - Spark调优的更多相关文章
- JVM内存参数详解以及配置调优
基本概念:PermGen space:全称是Permanent Generation space.就是说是永久保存的区域,用于存放Class和Meta信息,Class在被Load的时候被放入该区域He ...
- 【Spark深入学习 -14】Spark应用经验与程序调优
----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调 ...
- 浅谈Spark应用程序的性能调优
浅谈Spark应用程序的性能调优 :http://geek.csdn.net/news/detail/51819 下面列出的这些API会导致Shuffle操作,是数据倾斜可能发生的关键点所在 1. g ...
- Spark企业级应用开发和调优
1.Spark企业级应用开发和调优 Spark项目编程优化历程记录,主要介绍了Spark企业级别的开发过程中面临的问题和调优方法.包含合理分配分片,避免计算中间结果(大数据量)的collect,合理使 ...
- Spark性能优化:开发调优篇
1.前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算 ...
- 小甲鱼PE详解之输入表(导出表)详解(PE详解09)
小甲鱼PE详解之输出表(导出表)详解(PE详解09) 当PE 文件被执行的时候,Windows 加载器将文件装入内存并将导入表(Export Table) 登记的动态链接库(一般是DLL 格式)文件一 ...
- Spark详解
原文连接 http://xiguada.org/spark/ Spark概述 当前,MapReduce编程模型已经成为主流的分布式编程模型,它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的 ...
- (转)Spark性能优化:资源调优篇
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何 ...
- 基于CDH 5.9.1 搭建 Hive on Spark 及相关配置和调优
Hive默认使用的计算框架是MapReduce,在我们使用Hive的时候通过写SQL语句,Hive会自动将SQL语句转化成MapReduce作业去执行,但是MapReduce的执行速度远差与Spark ...
- [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...
随机推荐
- Jquery关于checkbox选中第二次失效的问题。
$(".selector input[type='checkbox']").attr("checked",true); $(".selector in ...
- 基于GA遗传算法的TSP旅行商问题求解
import random import math import matplotlib.pyplot as plt import city class no: #该类表示每个点的坐标 def __in ...
- Pictionary 方法记录
[COCI2017-2018#5] Pictionary 题面翻译 题目描述 在宇宙一个不为人知的地方,有一个星球,上面有一个国家,只有数学家居住. 在这个国家有\(n\)个数学家,有趣的是,每个数学 ...
- Oracle pfile与spfile文件参数(转载)
一.pfile与spfile Oracle中的参数文件是一个包含一系列参数以及参数对应值的操作系统文件.它们是在数据库实例启动时候加载的,决定了数据库的物理 结构.内存.数据库的限制及系统大量的默认值 ...
- 要写文档了,emmm,先写个文档工具吧——DocMarkdown
前言 之前想用Markdown来写框架文档,找来找去发现还是Jekyll的多,但又感觉不是很合我的需求 于是打算自己简单弄一个展示Markdown文档的网站工具,要支持多版本.多语言.导航.页内导航等 ...
- 微信小程序canvas 证件照制作
小程序制作证件照过程 利用canvas制作生活中常用的证件照,压缩图片,修改图片dpi.希望给大家带来方便. 证件照小程序制作要点 上传合适的图片,方便制作证件照 调用AI接口,将图像进行人像分割.这 ...
- Java安全之Resin2内存马
Java安全之Resin2内存马 环境 resin2.1.17 添加Filter分析 依然是web.xml注册一个filter,debug进去看注册流程 debug dofilter逻辑时看到如下代码 ...
- 用 vue3 中的 reduce(累加器) 随机生成100个字母,放入数组中,统计每个字母出现的次数
一.首先不用 reduce() 来实现 代码如下: <template lang=""> <div> <h1>统计每个字母出现的次数,不使用r ...
- Java:ArrayList的基本使用(学习笔记)
集合和数组的对比(为什么要有集合) 分为俩点 1. 长度:数组的长度是固定的,集合的长度是可变的. 2. 存储类型: 数组:可以存储基本数据类型,引用数据类型. 集合:只能存储引用数据类型. 小t ...
- 😀 Java并发 - (并发基础)
Java并发 - (并发基础) 1.什么是共享资源 堆是被所有线程共享的一块内存区域.在虚拟机启动时创建.此内存区域的唯一目的就是存放对象实例 Java中几乎所有的对象实例都在这里分配内存.方法区与堆 ...