spark数据清洗
spark数据清洗
1.Scala常用语法
运用maven创建项目,需要导入如下依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.1</version>
</dependency>
main方法:
def main(args:Array[String]):Unit={ }
变量
var i:Int=1 //在类中自带get和set功能
val a:Int=2 //常量,在类中只有get功能
var arr:Array[String]=Array("abc","bcd","cde")
类型转换
var num:Int=20
var str:String=num.toString
var num2:Int=str.toInt
条件判断
var score:Int=88
if(score==100){
println("优秀")
}else if (score>=90){
println("良好")
}else{
println("继续加油")
}
循环:
//遍历arr
var arr=Array("java","python","scala")
//方式1
for(a<-arr){
println(a)
}
//方式2
arr.foreach(println) //循环1到1(包括1和10)
for(a<-1 to 10){
println(a)
}
元组
//声明赋值:
var t=(4.13,"hello",44)
//取值:
println(t._1) //4.13
println(t._2) //hello
函数:
def test(x:Int,y:Int):Int={
x+y //返回值时不需要加return
}
RDD的创建
//使用集合、数组创建RDD
val arr = Array(1,2,3,4,5)
val rdd = sc.parallelize(arr) 或者 val rdd = sc.makeRDD(arr)
rdd.collect() 转为数组
//通过外部存储创建RDD
//Hdfs上:
sc.textFile(“hdfs://master:9000/wordcount.txt”)
//本地测试
sc.textFile(“data/xxx.csv”)
//通过其他RDD得到新的RDD
val rdd = sc.parallielize(Array(1,2,3,4,5))
arl rdd2 = rdd.map(_*2)
2.常用方法
计数器:
//定义累加器:
val longAccum=sc.longAccumulator("count")
//累加器增加:
longAccum.add(1)//每次增加1
//获取累加器数据
print("累加器结果是:"+longAccum.value)
去重:distinct()
文本行数:count()
package com.xyz import org.apache.spark.{SparkConf, SparkContext} /**
* @author 小勇子start
* @create 2021-10-12 14:03
*/
object DistinctDemo {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local").setAppName("test1")
val sc=new SparkContext(sparkConf)
val rdd=sc.textFile("data/distinct.txt")
val count1:Long=rdd.count();
val rdd2=rdd.distinct()
val count2:Long=rdd2.count()
println("清除的数据条数有:"+(count1-count2)) //
rdd2.saveAsTextFile("data/out1")
sc.stop()
}
}
过滤:filter :false删除,true保留
package com.xyz import org.apache.spark.{SparkConf, SparkContext} /**
* @author 小勇子start
* @create 2021-10-12 14:03
*/
object FilterDemo {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local").setAppName("test1")
val sc = new SparkContext(sparkConf)
val longAccum=sc.longAccumulator("count")
val rdd = sc.textFile("data/test.txt")
val rdd2 = rdd.filter(!_.startsWith("id")) //过滤表头
//val rdd2=rdd.filter(!_.endsWith("e")) //过滤以“e”结尾的数据
val rdd3 = rdd2.filter(x => {//过滤分数小于50的科目
val str = x.split(",")
val score = str(2).toInt
if (score > 50)
true
else{
longAccum.add(1)
false
} })
rdd3.saveAsTextFile("data/out3")
print("分数小于50的数据条数是:"+longAccum.value)
sc.stop()
}
}
map() :适合用来格式化输出格式
package com.xyz import org.apache.spark.{SparkConf, SparkContext} /**
* @author 小勇子start
* @create 2021-10-12 14:03
*/
object MapDemo {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local").setAppName("test1")
val sc = new SparkContext(sparkConf)
val rdd = sc.textFile("data/test.txt")
val rdd2 = rdd.filter(!_.startsWith("id")) //过滤表头
val rdd3=rdd2.map(x=>{
val str=x.split(",")
val name=str(3)
val score=str(2)
val kc=str(1)
val newStr=name+","+score+","+kc
newStr
})
rdd3.saveAsTextFile("data/out4")
sc.stop()
}
}
排序:sortBy() ,填两个值,前一个填根据排序的字段,后一个填升降序,默认升序
package com.xyz import org.apache.spark.{SparkConf, SparkContext} /**
* @author 小勇子start
* @create 2021-10-12 14:03
*/
object sortByDemo {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local").setAppName("test1")
val sc = new SparkContext(sparkConf)
val rdd = sc.textFile("data/test.txt")
val rdd2 = rdd.filter(!_.startsWith("id"))
val rdd3=rdd2.map(x=>{
val str=x.split(",")
val name=str(3)
val score=str(2)
val kc=str(1)
val newStr=name+","+score+","+kc
newStr
}).sortBy(x=>x.split(",")(1),ascending = false)//降序,默认为true
rdd3.saveAsTextFile("data/out5")
sc.stop()
}
}
3.单词计数案例
package com.xyz
import org.apache.spark.{SparkConf, SparkContext}
/**
* @author 小勇子start
* @create 2021-10-12 21:22
*/
object WordCount {
def main(args: Array[String]): Unit = {
val sparkConf=new SparkConf().setMaster("local").setAppName("test")
val sc=new SparkContext(sparkConf)
val rdd=sc.textFile("data/test2.txt")
val rdd2=rdd.flatMap(_.split(",")).map((_,1)).reduceByKey(_+_)
//flatMap能把数据一次性读取出来,并按"," 分成若干个数据
//reduceByKey(_+_)表示每一个相同的key的value相加 _:代表key,1 :是value
//格式必须是:(k,v)才能使用该方法
rdd2.saveAsTextFile("data/out1")
}
}
4.求科目平均值案例
package com.xyz
import org.apache.spark.{SparkConf, SparkContext}
/**
* @author 小勇子start
* @create 2021-10-13 17:16
*/
object GroupByKeyDemo {
def main(args: Array[String]): Unit = {
val sparkConf=new SparkConf().setMaster("local").setAppName("test2")
val sc= new SparkContext(sparkConf)
val rdd=sc.textFile("data/test.txt")
val rdd2=rdd.map(x=>{
val str=x.split(",")
val km=str(1)
val score=str(2).toFloat
(km,score)
}).groupByKey().map(x=>{
val km=x._1
var allScore:Float=0;
for(i<-x._2){
allScore+=i
}
km+"的平均分为:"+allScore/x._2.size
})
rdd2.saveAsTextFile("data/out2")
}
}
//groupByKey 根据(k,v)中的k分组,将所有k相同的v都放入同一个iterate中保存起来,返回一个(k,iterate(v1,v2,v3))
5.join案例
package com.xyz
import org.apache.spark.{SparkConf, SparkContext}
/**
* @author 小勇子start
* @create 2021-10-13 18:41
*/
object JoinDemo{
def main(args: Array[String]): Unit = {
val sparkConf=new SparkConf().setMaster("local").setAppName("test4")
val sc= new SparkContext(sparkConf)
val rdd1=sc.textFile("data/test.txt")
val rdd2=sc.textFile("data/test_2.txt")
val rdd1_2=rdd1.map(x=>{
val str=x.split(",")
val id=str(5).toInt
(id,x)
})
val rdd2_2=rdd2.map(x=>{
val str=x.split(",")
val id=str(0).toInt
(id,x)
})
rdd2_2.join(rdd1_2).map(x=>{
val str=x._2._2.replace(","+x._1,"")
x._2._1+","+str
}).saveAsTextFile("data/out4")
}
}
6.spark项目打jar包
7.运行jar包
以单词计数为例
[root@master bin]# pwd
/usr/local/src/spark/bin
[root@master bin]#spark-submit --master spark:master:7707 --class com.xyz.WordCount /opt/test/ScalaDemo.jar hdfs://master:9000/test/test2.txt hdfs://master:9000/test/out1
--master 后面可以填 local 、spark等等
--class 后面填要运行的主类
/opt/test/ScalaDemo.jar 表示jar包位置
hdfs://master:9000/test/test2.txt 文件输入位置 不能写成 http://master:50070
hdfs://master:9000/test/out1 文件存储位置
输入输出位置与下面对应
spark数据清洗的更多相关文章
- ETL实践--Spark做数据清洗
ETL实践--Spark做数据清洗 上篇博客,说的是用hive代替kettle的表关联.是为了提高效率. 本文要说的spark就不光是为了效率的问题. 1.用spark的原因 (如果是一个sql能搞定 ...
- 2-Spark高级数据分析-第二章 用Scala和Spark进行数据分析
数据清洗时数据科学项目的第一步,往往也是最重要的一步. 本章主要做数据统计(总数.最大值.最小值.平均值.标准偏差)和判断记录匹配程度. Spark编程模型 编写Spark程序通常包括一系列相关步骤: ...
- [spark案例学习] WEB日志分析
数据准备 数据下载:美国宇航局肯尼迪航天中心WEB日志 我们先来看看数据:首先将日志加载到RDD,并显示出前20行(默认). import sys import os log_file_path =' ...
- Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming
Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为St ...
- zhihu spark集群,书籍,论文
spark集群中的节点可以只处理自身独立数据库里的数据,然后汇总吗? 修改 我将spark搭建在两台机器上,其中一台既是master又是slave,另一台是slave,两台机器上均装有独立的mongo ...
- 使用 Spark MLlib 做 K-means 聚类分析[转]
原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Lear ...
- [Big Data]从Hadoop到Spark的架构实践
摘要:本文则主要介绍TalkingData在大数据平台建设过程中,逐渐引入Spark,并且以Hadoop YARN和Spark为基础来构建移动大数据平台的过程. 当下,Spark已经在国内得到了广泛的 ...
- Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一 ...
- [转载] 从Hadoop到Spark的架构实践
转载自http://www.csdn.net/article/2015-06-08/2824889 http://www.zhihu.com/question/26568496 当下,Spark已经在 ...
- 以慕课网日志分析为例-进入大数据Spark SQL的世界
下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目 ...
随机推荐
- kubernetes笔记-2-基本操作
一.kubectl的基本操作 语法: kubectl [command] [type] [name] [flags] 语法说明: command:对资源执行相应操作的子命令,如:get.cre ...
- 8 STL-stack
重新系统学习c++语言,并将学习过程中的知识在这里抄录.总结.沉淀.同时希望对刷到的朋友有所帮助,一起加油哦! 生命就像一朵花,要拼尽全力绽放!死磕自个儿,身心愉悦! 写在前面,本篇章主要介绍S ...
- [论文阅读] 颜色迁移-N维pdf迁移
[论文阅读] 颜色迁移-N维pdf迁移 文章: N-Dimensional Probability Density Function Transfer and its Application to C ...
- 小米mini路由器刷breed不死鸟和潘多拉固件
前言 开启小米路由器ssh, 这一步浪费我很长时间,因为目前的开发版都对ssh升级进行了md5校验,导致官方升级方法总是失败,所以换成老版本的 路由器固件就行了. 步骤 下载 0.4.36 mini路 ...
- nvm下升级npm版本
1 3445 error path C:\Users\xxx\AppData\Roaming\nvm\v12.18.3\npm.cmd 2 3446 error Refusing to delete ...
- 2022-6.824-Lab1:Map&Reduce
lab 地址 : https://pdos.csail.mit.edu/6.824/labs/lab-mr.html 1. 介绍 准备工作 阅读 MapReduce 做什么 实现一个分布式的 Map ...
- MySQL转义字符+存储过程的使用
MySQL中大于,大于等于,小于,小于等于的转义写法 一.左边就是原来的符号,右边就是在mybatis中代替的符号 二.如何通过mysql的存储过程创建虚拟表(临时表),并插入1000条数据 这些表通 ...
- Jmeter 之bzm- Concurrency Thread Group 压测
bzm- Concurrency Thread Group 并发线程组代替 jp@gc - Stepping Thread Group线程组. 1. 下载jmeter-plugins-manage ...
- week_5
Andrew Ng机器学习笔记---by Orangestar Week_5 重点:反向传播算法,backpropagation 1. Cost Function神经元的代价函数 回顾定义:(上节回顾 ...
- 前菜--Numpy
import numpy as np NumPy : numberial python NumPy的核心:数据结构 ndarray 1.1 数组方法 np.array 创建数组 基本语法:np.arr ...