BAL数据集详解
详细格式:https://grail.cs.washington.edu/projects/bal/
Bundle Adjustment in the Large
Recent work in Structure from Motion has demonstrated the possibility of reconstructing geometry from large-scale community photo collections. Bundle adjustment, the joint non-linear refinement of camera and point parameters, is a key component of most SfM systems, and one which can consume a significant amount of time for large problems. As the number of photos in such collections continues to grow into the hundreds of thousands or even millions, the scalability of bundle adjustment algorithms has become a critical issue.
In this project, we consider the design and implementation of a new Inexact Newton type bundle adjustment algorithm, which uses substantially less time and memory than standard Schur complement based methods, without compromising on the quality of the solution. We explore the use of the Conjugate Gradients algorithm for calculating the Newton step and its performance as a function of some simple and computationally efficient preconditioners. We also show that the use of the Schur complement is not limited to factorization-based methods, how it can be used as part of the Conjugate Gradients (CG) method without incurring the computational cost of actually calculating and storing it in memory, and how this use is equivalent to the choice of a particular preconditioner.
This research is part of Community Photo Collections project at the University of Washington GRAIL Lab. which explores the use of large scale internet image collections for furthering research in computer vision and graphics.
Team
Sameer Agarwal, University of Washington
Noah Snavely, Cornell University
Steve Seitz, University of Washington
Richard Szeliski, Microsoft Research
Paper
Bundle Adjustment in the Large
Sameer Agarwal, Noah Snavely, Steven M. Seitz and Richard Szeliski
European Conference on Computer Vision, 2010 , Crete, Greece.
Supplementary Material
Poster
Software & Data
As part of this project we will be releasing all the test problems, software and performance data reported in the paper. Currently we have the test problems available for download. The code shall be available shortly.
We experimented with two sources of data:
Images captured at a regular rate using a Ladybug camera mounted on a moving vehicle. Image matching was done by exploiting the temporal order of the images and the GPS information captured at the time of image capture.
Images downloaded from Flickr.com and matched using the system described in Building Rome in a Day. We used images from Trafalgar Square and the cities of Dubrovnik, Venice, and Rome.
For Flickr photographs, the matched images were decomposed into a skeletal set (i.e., a sparse core of images) and a set of leaf images. The skeletal set was reconstructed first, then the leaf images were added to it via resectioning followed by triangulation of the remaing 3D points. The skeletal sets and the Ladybug datasets were reconstructed incrementally using a modified version of Bundler, which was instrumented to dump intermediate unoptimized reconstructions to disk. This gave rise to the Ladybug, Trafalgar Square, Dubrovnik and Venice datasets. We refer to the bundle adjustment problems obtained after adding the leaf images to the skeletal set and triangulating the remaing points as the Final problems.
Available Datasets
Ladybug
Trafalgar Square
Dubrovnik
Venice
Final
Camera Model
We use a pinhole camera model; the parameters we estimate for each camera area rotation R, a translation t, a focal length f and two radial distortion parameters k1 and k2. The formula for projecting a 3D point X into a camera R,t,f,k1,k2 is:
P = R * X + t (conversion from world to camera coordinates)
p = -P / P.z (perspective division)
p' = f * r(p) * p (conversion to pixel coordinates)
where P.z is the third (z) coordinate of P. In the last equation, r(p) is a function that computes a scaling factor to undo the radial distortion:
r(p) = 1.0 + k1 * ||p||^2 + k2 * ||p||^4.
This gives a projection in pixels, where the origin of the image is the center of the image, the positive x-axis points right, and the positive y-axis points up (in addition, in the camera coordinate system, the positive z-axis points backwards, so the camera is looking down the negative z-axis, as in OpenGL).
Data Format
Each problem is provided as a bzip2 compressed text file in the following format.
<num_cameras> <num_points> <num_observations>
<camera_index_1> <point_index_1> <x_1> <y_1>
...
<camera_index_num_observations> <point_index_num_observations> <x_num_observations> <y_num_observations>
<camera_1>
...
<camera_num_cameras>
<point_1>
...
<point_num_points>
Where, there camera and point indices start from 0. Each camera is a set of 9 parameters - R,t,f,k1 and k2. The rotation R is specified as a Rodrigues' vector.
看一个数据集:
16为相机个数, 22106为路标个数 83718为观测数据个数
第一行:
0为第0个相机, 0为第0个路标, 后面2个为观测数据,像素坐标
83718后面是相关参数,前面是相机参数有9维:-R(罗德里格斯向量3维),t(3维),f(相机焦距),k1(畸变参数),k2(畸变参数)。依次对应相机0 - num_cameras
再后面是路标点的空间3D参数
BAL数据集详解的更多相关文章
- BI之SSAS完整实战教程5 -- 详解多维数据集结构
之前简单介绍过多维数据集(Cube)的结构. 原来计划将Cube结构这部分内容打散,在实验中穿插讲解, 考虑到结构之间不同的部分都有联系,如果打散了将反而不好理解,还是直接一次性全部讲完. 本篇我们将 ...
- 全网最详细的大数据集群环境下多个不同版本的Cloudera Hue之间的界面对比(图文详解)
不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 安装Hue后的一些功能 ...
- 全网最详细的大数据集群环境下如何正确安装并配置多个不同版本的Cloudera Hue(图文详解)
不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 全网最详细的大数据集群 ...
- Ubuntu14.04下Ambari安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)
不多说,直接上干货! 写在前面的话 (1) 最近一段时间,因担任我团队实验室的大数据环境集群真实物理机器工作,至此,本人秉持负责.认真和细心的态度,先分别在虚拟机上模拟搭建ambari(基于CentO ...
- Ubuntu14.04下Cloudera安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)(在线或离线)
第一步: Cloudera Manager安装之Cloudera Manager安装前准备(Ubuntu14.04)(一) 第二步: Cloudera Manager安装之时间服务器和时间客户端(Ub ...
- 关于在真实物理机器上用cloudermanger或ambari搭建大数据集群注意事项总结、经验和感悟心得(图文详解)
写在前面的话 (1) 最近一段时间,因担任我团队实验室的大数据环境集群真实物理机器工作,至此,本人秉持负责.认真和细心的态度,先分别在虚拟机上模拟搭建ambari(基于CentOS6.5版本)和clo ...
- snort + barnyard2如何正确读取snort.unified2格式的数据集并且入库MySQL(图文详解)
不多说,直接上干货! 为什么,要写这篇论文? 是因为,目前科研的我,正值研三,致力于网络安全.大数据.机器学习研究领域! 论文方向的需要,同时不局限于真实物理环境机器实验室的攻防环境.也不局限于真实物 ...
- Oracle创建表语句(Create table)语法详解及示例、、 C# 调用Oracle 存储过程返回数据集 实例
Oracle创建表语句(Create table)语法详解及示例 2010-06-28 13:59:13| 分类: Oracle PL/SQL|字号 订阅 创建表(Create table)语法详解 ...
- TextCNN 代码详解(附测试数据集以及GitHub 地址)
前言:本篇是TextCNN系列的第三篇,分享TextCNN的优化经验 前两篇可见: 文本分类算法TextCNN原理详解(一) 一.textCNN 整体框架 1. 模型架构 图一:textCNN 模型结 ...
- EasyPR--开发详解(6)SVM开发详解
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机 ...
随机推荐
- Go语言核心36讲23
我在上两篇文章中,详细地讲述了Go语言中的错误处理,并从两个视角为你总结了错误类型.错误值的处理技巧和设计方式. 在本篇,我要给你展示Go语言的另外一种错误处理方式.不过,严格来说,它处理的不是错误, ...
- dd格式化硬盘
1. dd硬盘读写测速(不做实际读写): 测试纯写入性能 dd if=/dev/zero of=/dev/sdb bs=1M count=10240 oflag=direct 测试纯读取性能 dd i ...
- EluxJS-让你像切蛋糕一样拆解前端巨石应用
大家好,EluxJS是一套基于"微模块"和"模型驱动"的跨平台.跨框架『同构方案』,欢迎了解... 可怕的巨石怪 工作中最可怕的是什么?是遇到业务复杂且乱作一团 ...
- AcWing第78场周赛
今天想起来了,就补一下吧~ 第一题 商品分类 货架中摆放着 n 件商品,每件商品都有两个属性:名称和产地. 当且仅当两件商品的名称和产地都相同时,两件商品才视为同一种商品. 请你统计,货架中一共有多少 ...
- Linux面试题2:网络IO模型 & IO多路复用
网络IO 先确定一下范围,我们讨论的都是网络IO,现阶段计算机早已经从CPU密集型转换成网络IO密集型,所以网络io的类型对于服务响应而言更重要. 五种IO模型 依据Unix的IO分类,网络IO分为五 ...
- 移除元素-LeetCode27 双指针
力扣链接:https://leetcode.cn/problems/remove-element/ 题目 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返 ...
- 使用.NET7和C#11打造最快的序列化程序-以MemoryPack为例
译者注 本文是一篇不可多得的好文,MemoryPack 的作者 neuecc 大佬通过本文解释了他是如何将序列化程序性能提升到极致的:其中从很多方面(可变长度.字符串.集合等)解释了一些性能优化的技巧 ...
- Linux 基础-新手必备命令
Linux 基础-新手必备命令 概述 常见执行 Linux 命令的格式是这样的: 命令名称 [命令参数] [命令对象] 注意,命令名称.命令参数.命令对象之间请用空格键分隔. 命令对象一般是指要处理的 ...
- static_cast和dynamic_cast
C++的强制类型转换,除了继承自C语言的写法((目标类型)表达式)之外,还新增了4个关键字,分别是:static_cast.dynamic_cast.const_cast和reinterpret_ca ...
- python前言
目录 一.typora软件以及markdown语法介绍 1.输入标题的两种方法 2.无序列表 3.有序列表 4.在typora里插入多行代码块 5.制作表格 6.表情包 7.链接 8.Typora查看 ...