BAL数据集详解
详细格式:https://grail.cs.washington.edu/projects/bal/
Bundle Adjustment in the Large
Recent work in Structure from Motion has demonstrated the possibility of reconstructing geometry from large-scale community photo collections. Bundle adjustment, the joint non-linear refinement of camera and point parameters, is a key component of most SfM systems, and one which can consume a significant amount of time for large problems. As the number of photos in such collections continues to grow into the hundreds of thousands or even millions, the scalability of bundle adjustment algorithms has become a critical issue.
In this project, we consider the design and implementation of a new Inexact Newton type bundle adjustment algorithm, which uses substantially less time and memory than standard Schur complement based methods, without compromising on the quality of the solution. We explore the use of the Conjugate Gradients algorithm for calculating the Newton step and its performance as a function of some simple and computationally efficient preconditioners. We also show that the use of the Schur complement is not limited to factorization-based methods, how it can be used as part of the Conjugate Gradients (CG) method without incurring the computational cost of actually calculating and storing it in memory, and how this use is equivalent to the choice of a particular preconditioner.
This research is part of Community Photo Collections project at the University of Washington GRAIL Lab. which explores the use of large scale internet image collections for furthering research in computer vision and graphics.
Team
Sameer Agarwal, University of Washington
Noah Snavely, Cornell University
Steve Seitz, University of Washington
Richard Szeliski, Microsoft Research
Paper
Bundle Adjustment in the Large
Sameer Agarwal, Noah Snavely, Steven M. Seitz and Richard Szeliski
European Conference on Computer Vision, 2010 , Crete, Greece.
Supplementary Material
Poster
Software & Data
As part of this project we will be releasing all the test problems, software and performance data reported in the paper. Currently we have the test problems available for download. The code shall be available shortly.
We experimented with two sources of data:
Images captured at a regular rate using a Ladybug camera mounted on a moving vehicle. Image matching was done by exploiting the temporal order of the images and the GPS information captured at the time of image capture.
Images downloaded from Flickr.com and matched using the system described in Building Rome in a Day. We used images from Trafalgar Square and the cities of Dubrovnik, Venice, and Rome.
For Flickr photographs, the matched images were decomposed into a skeletal set (i.e., a sparse core of images) and a set of leaf images. The skeletal set was reconstructed first, then the leaf images were added to it via resectioning followed by triangulation of the remaing 3D points. The skeletal sets and the Ladybug datasets were reconstructed incrementally using a modified version of Bundler, which was instrumented to dump intermediate unoptimized reconstructions to disk. This gave rise to the Ladybug, Trafalgar Square, Dubrovnik and Venice datasets. We refer to the bundle adjustment problems obtained after adding the leaf images to the skeletal set and triangulating the remaing points as the Final problems.
Available Datasets
Ladybug
Trafalgar Square
Dubrovnik
Venice
Final
Camera Model
We use a pinhole camera model; the parameters we estimate for each camera area rotation R, a translation t, a focal length f and two radial distortion parameters k1 and k2. The formula for projecting a 3D point X into a camera R,t,f,k1,k2 is:
P = R * X + t (conversion from world to camera coordinates)
p = -P / P.z (perspective division)
p' = f * r(p) * p (conversion to pixel coordinates)
where P.z is the third (z) coordinate of P. In the last equation, r(p) is a function that computes a scaling factor to undo the radial distortion:
r(p) = 1.0 + k1 * ||p||^2 + k2 * ||p||^4.
This gives a projection in pixels, where the origin of the image is the center of the image, the positive x-axis points right, and the positive y-axis points up (in addition, in the camera coordinate system, the positive z-axis points backwards, so the camera is looking down the negative z-axis, as in OpenGL).
Data Format
Each problem is provided as a bzip2 compressed text file in the following format.
<num_cameras> <num_points> <num_observations>
<camera_index_1> <point_index_1> <x_1> <y_1>
...
<camera_index_num_observations> <point_index_num_observations> <x_num_observations> <y_num_observations>
<camera_1>
...
<camera_num_cameras>
<point_1>
...
<point_num_points>
Where, there camera and point indices start from 0. Each camera is a set of 9 parameters - R,t,f,k1 and k2. The rotation R is specified as a Rodrigues' vector.
看一个数据集:
16为相机个数, 22106为路标个数 83718为观测数据个数
第一行:
0为第0个相机, 0为第0个路标, 后面2个为观测数据,像素坐标
83718后面是相关参数,前面是相机参数有9维:-R(罗德里格斯向量3维),t(3维),f(相机焦距),k1(畸变参数),k2(畸变参数)。依次对应相机0 - num_cameras
再后面是路标点的空间3D参数
BAL数据集详解的更多相关文章
- BI之SSAS完整实战教程5 -- 详解多维数据集结构
之前简单介绍过多维数据集(Cube)的结构. 原来计划将Cube结构这部分内容打散,在实验中穿插讲解, 考虑到结构之间不同的部分都有联系,如果打散了将反而不好理解,还是直接一次性全部讲完. 本篇我们将 ...
- 全网最详细的大数据集群环境下多个不同版本的Cloudera Hue之间的界面对比(图文详解)
不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 安装Hue后的一些功能 ...
- 全网最详细的大数据集群环境下如何正确安装并配置多个不同版本的Cloudera Hue(图文详解)
不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 全网最详细的大数据集群 ...
- Ubuntu14.04下Ambari安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)
不多说,直接上干货! 写在前面的话 (1) 最近一段时间,因担任我团队实验室的大数据环境集群真实物理机器工作,至此,本人秉持负责.认真和细心的态度,先分别在虚拟机上模拟搭建ambari(基于CentO ...
- Ubuntu14.04下Cloudera安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)(在线或离线)
第一步: Cloudera Manager安装之Cloudera Manager安装前准备(Ubuntu14.04)(一) 第二步: Cloudera Manager安装之时间服务器和时间客户端(Ub ...
- 关于在真实物理机器上用cloudermanger或ambari搭建大数据集群注意事项总结、经验和感悟心得(图文详解)
写在前面的话 (1) 最近一段时间,因担任我团队实验室的大数据环境集群真实物理机器工作,至此,本人秉持负责.认真和细心的态度,先分别在虚拟机上模拟搭建ambari(基于CentOS6.5版本)和clo ...
- snort + barnyard2如何正确读取snort.unified2格式的数据集并且入库MySQL(图文详解)
不多说,直接上干货! 为什么,要写这篇论文? 是因为,目前科研的我,正值研三,致力于网络安全.大数据.机器学习研究领域! 论文方向的需要,同时不局限于真实物理环境机器实验室的攻防环境.也不局限于真实物 ...
- Oracle创建表语句(Create table)语法详解及示例、、 C# 调用Oracle 存储过程返回数据集 实例
Oracle创建表语句(Create table)语法详解及示例 2010-06-28 13:59:13| 分类: Oracle PL/SQL|字号 订阅 创建表(Create table)语法详解 ...
- TextCNN 代码详解(附测试数据集以及GitHub 地址)
前言:本篇是TextCNN系列的第三篇,分享TextCNN的优化经验 前两篇可见: 文本分类算法TextCNN原理详解(一) 一.textCNN 整体框架 1. 模型架构 图一:textCNN 模型结 ...
- EasyPR--开发详解(6)SVM开发详解
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机 ...
随机推荐
- 秦皇岛2020CCPC补题
秦皇岛2020CCPC A,E,F,G,I,K A. A Greeting from Qinhuangdao 知识点:简单题 复杂度:\(O(logn)\) #include<bits/stdc ...
- <四>理解空间配置器allocator, 优化STL 中的Vector
.在上一节我们实现的 MyVector存在哪些问题? 问题1 现在有Student类 class Student{ public: Student(){cout<<"构造Stud ...
- 一文带你快速入门 Go 语言微服务开发 - Dubbo Go 入门实践总结
更多详细示例可直接访问 Dubbo 官网 或搜索关注官方微信公众号:Apache Dubbo 1. 安装Go语言环境 建议使用最新版 go 1.17 go version >= go 1.15 ...
- 漫谈计算机网络: 运输层 ------ 从UDP ->TCP , 从面向通信->面向用户,三次握手/四次挥手?
面试答不上?计网很枯燥? 听说你学习 计网 每次记了都会忘? 不妨抽时间和我一起多学学它 深入浅出,用你的空闲时间来探索计算机网络的硬核知识! 博主的上篇连载文章<初识图像处理技术> 图像 ...
- TornadoFx的TableView组件使用
原文: TornadoFx的TableView组件使用 - Stars-One的杂货小窝 最近慢慢地接触了JavaFx中的TableView的使用,记下笔记总结 使用 1.基本使用 TornadoFx ...
- 【Java EE】Day14 Servlet、HTTP、Request
一.Servlet 二.HTTP 三.Request 四.登录案例
- RFN-Nest_ An end-to-end residual fusion network for infrared and visible images 论文解读
RFN-Nest 2021 研究 图像融合分为三步:特征提取,融合策略,图像重建. 当前端到端的图像融合方法:基于GAN的.还有本文提出的 研究背景:当前设计的融合策略在为特定任务生成融合图像方面是比 ...
- 如何用3D流体实现逼真水流效果?
华为应用市场在2022年HDC大会期间发布了一款3D水流主题,基于华为HMS Core Scene Kit服务能力,展现立体灵动的水流岛屿,可跟随用户指尖实现实时流体波动效果,既趣味又解压. 让变幻莫 ...
- 判断条件为NULL
在ASCII码表里NULL的二进制位0.所以NULL作为判断条件时,表示为假的意思. ASCII表 二进制 字符 ...
- 《HelloGitHub》第 81 期
兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣.入门级的开源项目. https://github.com/521xueweiha ...