JZOJ 4366. 【GDKOI2016】项链
\(\text{Problem}\)
给出一个项链,删去连续的一部分,使剩下的对称,且长度最长
\(\text{Analysis}\)
可以发现,剩下的合法项链一定是由两个回文串接起来(由对称性质可知)
先套路地将项链倍长
那么我们只要用 \(\text{Manacher}\) 算出以每个点中心的回文半径 \(p[i]\)
找到两个中心 \(i,j(j > i)\) 使得 \(j - i \le n\) 且 \(i + p[i] - 1 \le j - p[j] + 1\)
\(n\) 为读入的串的长度
枚举一个 \(i\),动态确定一个决策集合,线段树维护最优解即可
注意一个细节,线段树维护的时候一个位置可能加入多个值,这些都是可行的,但删除的时候会使所有的值消失,需要特别处理
\(O(n \log n)\)
但还有扫描线+并查集 \(o(n \alpha(n))\) 的优秀解法(不会)
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N = 2e5 + 5;
int p[N << 1], n, len, bz[N << 1];
char s[N], str[N << 1];
void Manacher()
{
str[0] = '@', str[++n] = '#';
scanf("%s", s);
len = strlen(s);
for(register int i = 0; i < len; i++) str[++n] = s[i], str[++n] = '#';
for(register int i = 0; i < len; i++) str[++n] = s[i], str[++n] = '#';
str[++n] = '\0', len = len * 2;
int mx = 0, id = 0;
for(register int i = 1; i <= n; i++)
{
p[i] = (i < mx ? min(p[id * 2 - i], mx - i) : 1);
while (i - p[i] + len > i + p[i] && str[i + p[i]] == str[i - p[i]]) ++p[i];
if (i + p[i] > mx) mx = i + p[i], id = i;
}
}
#define ls (p << 1)
#define rs (ls | 1)
int seg[N * 8];
void update(int p, int l, int r, int x, int v)
{
if (l == r)
{
bz[v] = 1, seg[p] = v;
return;
}
int mid = (l + r) >> 1;
if (x <= mid) update(ls, l, mid, x, v);
else update(rs, mid + 1, r, x, v);
seg[p] = max(seg[ls], seg[rs]);
}
int query(int p, int l, int r, int x, int y)
{
if (x <= l && r <= y) return seg[p];
int mid = (l + r) >> 1, res = 0;
if (x <= mid) res = query(ls, l, mid, x, y);
if (y > mid) res = max(res, query(rs, mid + 1, r, x, y));
return res;
}
int Solve()
{
int ans = 0; len >>= 1;
for(register int i = 1; i <= len + 1; i++) update(1, 0, n, i - p[i] + 1, i);
for(register int i = 1; i <= n - len; i++)
{
ans = max(ans, query(1, 0, n, 0, i + p[i] - 1) - i);
if (!bz[i]) update(1, 0, n, i - p[i + 1] + 1, 0);
update(1, 0, n, i + 1 + len - p[i + 1 + len] + 1, i + 1 + len);
}
return ans;
}
int main()
{
Manacher();
printf("%d\n", Solve());
}
JZOJ 4366. 【GDKOI2016】项链的更多相关文章
- BZOJ1878[SDOI2009]HH的项链
Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此, 他的项链变 ...
- bzoj 3202: [Sdoi2013]项链
Description 项链是人体的装饰品之一,是最早出现的首饰.项链除了具有装饰功能之外,有些项 链还具有特殊显示作用,如天主教徒的十字架链和佛教徒的念珠. 从古至今人们为了美化人体本身,也美 化环 ...
- bzoj 4330: JSOI2012 爱之项链
听说这题不公开.. 那就不贴题意了 首先要用burnside引理求出戒指的种数,那么对于一个顺时针旋转$k$个位置的置换就相当于连上一条$(i,(i+k)%R)$的边,每个环颜色必须相同 环的个数为$ ...
- BZOJ 1878: [SDOI2009]HH的项链
1878: [SDOI2009]HH的项链 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3548 Solved: 1757[Submit][Statu ...
- ZZULI 1876: 蛤玮的项链 Hash + 二分
Time Limit: 6 Sec Memory Limit: 128 MBSubmit: 153 Solved: 11 SubmitStatusWeb Board Description 蛤玮向 ...
- BZOJ1493 [NOI2007]项链工厂
未完待续... 终于改对了 热泪盈眶.jpg 错误原因:pushdown的时候没有判断是否有左右儿子,也没当x=0 return,于是出现一些奇怪的错误 #include<bits/stdc++ ...
- [题解]vijos & codevs 能量项链
a { text-decoration: none; font-family: "comic sans ms" } .math { color: gray; font-family ...
- NOIP2006能量项链[环形DP]
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定 ...
- [USACO1.1]坏掉的项链Broken Necklace
题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的. 这里是 n=29 的二个例子: 第一和第二个珠子在图片中已经被作记号. 图片 A ...
- 【BZOJ-3790】神奇项链 Manacher + 树状数组(奇葩) + DP
3790: 神奇项链 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 304 Solved: 150[Submit][Status][Discuss] ...
随机推荐
- Windows机器下VSCode安装及使用CmakeLists编译工程demo
使用VSCode, Mingw and Cmake写工程代码,从零开始写的那种,全过程分享...... 你若发现该帖中有待商榷的地方,还请指正赐教,先行拜谢了! 1 软件下载 1.1 vscode下载 ...
- day09 常用工具类&包装类&集合——List、Set
day09 常用工具类 java.lang.Math数值运算 基本数值运算,如初等函数.对数.平方根和三角函数 //最大最小值 Math.max(12, 21); Math.min(2, 3); // ...
- 【大数据面试】Flink 04:状态编程与容错机制、Table API、SQL、Flink CEP
六.状态编程与容错机制 1.状态介绍 (1)分类 流式计算分为无状态和有状态 无状态流针对每个独立事件输出结果,有状态流需要维护一个状态,并基于多个事件输出结果(当前事件+当前状态值) (2)有状态计 ...
- labuladong算法笔记总结
动态规划解题套路框架 学习计划: 最长回文子序列 〇.必读文章 1.数据结构和算法学习指南(学习算法和刷题的框架思维) 了解数据结构的操作和遍历(迭代or递归) 从树刷起,结合框架思维,有利于理解(回 ...
- linux-微服务-jar包部署指令
1 orderservice docker build -t orderservice . docker run -d -p 8084:8084 --name orderservice orderse ...
- webShell攻击及防御
最近公司项目也是经常被同行攻击,经过排查,基本定位都是挂马脚本导致,所以针对webShell攻击做一下记录. 首先简单说下 什么是webShell? 利用文件上传,上传了非法可以执行代码到服务器,然后 ...
- Redis基本操作(2)
一.list类型 列表的元素类型为string 按照插⼊顺序排序 增加.修改 例1:在左侧插⼊数据 lpush key value1 value2 ... 例2:在右侧插⼊数据 rpush key v ...
- 正则爬取豆瓣Top250数据存储到CSV文件(6行代码)
利用正则爬取豆瓣TOP250电影信息 电影名字 电影年份 电影评分 评论人数 import requests import csv import re # 不算导包的话正式代码6行 存储到csv文件 ...
- 本机无法配置远程服务器上的MySQL ODBC连接驱动
1.问题描述 我想要访问远程windows服务器上的MySQL数据库,因此需要在本地ODBC驱动上配好远程服务器的MySQL.但配置好基本信息后,测试的时候出现如下问题: 2.解决方法 之所以产生这种 ...
- nacos注册中心单节点ap架构源码解析
一.注册流程 单nacos节点流程图如下: 流程图可以知,Nacos注册流程包括客户端的服务注册.服务实例列表拉取.定时心跳任务:以及服务端的定时检查服务实例任务.服务实例更新推送5个功能. 服务注册 ...