Pytorch中的Sort的使用
>>> a = torch.randn(3,3)
>>> a
tensor([[ 0.5805, 0.1940, 1.2591],
[-0.0863, 0.5350, -0.7737],
[-0.4059, -0.0447, -0.3434]])
>>> a.sort(0,True)[0]
tensor([[ 0.5805, 0.5350, 1.2591],
[-0.0863, 0.1940, -0.3434],
[-0.4059, -0.0447, -0.7737]])
>>> a.sort(0,False)[0]
tensor([[-0.4059, -0.0447, -0.7737],
[-0.0863, 0.1940, -0.3434],
[ 0.5805, 0.5350, 1.2591]])
>>> a.sort(0,True)[1]
tensor([[0, 1, 0],
[1, 0, 2],
[2, 2, 1]])
>>> a.sort(1,True)[0]
tensor([[ 1.2591, 0.5805, 0.1940],
[ 0.5350, -0.0863, -0.7737],
[-0.0447, -0.3434, -0.4059]])
>>> a = torch.randn(3,3)
>>> a
tensor([[ 0.6073, -0.7748, -1.4459],
[ 0.8176, -0.9419, 1.2187],
[ 0.0301, -0.2075, -1.2473]])
>>> a.sort(1,True)[0]
tensor([[ 0.6073, -0.7748, -1.4459],
[ 1.2187, 0.8176, -0.9419],
[ 0.0301, -0.2075, -1.2473]])
>>>
>>> a.max(0)
torch.return_types.max(
values=tensor([ 0.8176, -0.2075, 1.2187]),
indices=tensor([1, 2, 1]))
>>> a.max(1)
torch.return_types.max(
values=tensor([0.6073, 1.2187, 0.0301]),
indices=tensor([0, 2, 0]))
>>>()中的0.1是行和列的区别。。。。
Pytorch中的Sort的使用的更多相关文章
- PyTorch官方中文文档:PyTorch中文文档
PyTorch中文文档 PyTorch是使用GPU和CPU优化的深度学习张量库. 说明 自动求导机制 CUDA语义 扩展PyTorch 多进程最佳实践 序列化语义 Package参考 torch to ...
- PyTorch中ReLU的inplace
0 - inplace 在pytorch中,nn.ReLU(inplace=True)和nn.LeakyReLU(inplace=True)中存在inplace字段.该参数的inplace=True的 ...
- 【转载】C#中自定义Sort的排序规则IComparable接口
C#中的List集合在排序的时候,如果不使用Lambda表达式进行排序的话,一般调用Sort()方法进行排序,如果希望Sort()方法排序后的结果跟我们预想的效果一致或者按照我们自定义的规则排序,则需 ...
- pytorch中tensorboardX的用法
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xce ...
- Pytorch中RoI pooling layer的几种实现
Faster-RCNN论文中在RoI-Head网络中,将128个RoI区域对应的feature map进行截取,而后利用RoI pooling层输出7*7大小的feature map.在pytorch ...
- pytorch 中的重要模块化接口nn.Module
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己 ...
- 对pytorch中Tensor的剖析
不是python层面Tensor的剖析,是C层面的剖析. 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库. 可以在torch的github上看到相关文档.看了半天 ...
- 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交 ...
- pytorch中如何使用DataLoader对数据集进行批处理
最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处 ...
随机推荐
- 进程的概念及multiprocess模块的使用
一.进程 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机结构中,进程是程序的基本执行实体:在 ...
- [转载] go get 拉取第三方包过慢、卡住解决方案
修改go env,选用国内的代理地址下载.
- Java学习day42
继续刷力扣题
- 通过循环按行顺序为一个5×5的二维数组a赋1到25的自然数,然后输出该数组。试编程。
- redis 知识点收集 注意理解底层
学redis,首先要明白其特性,其次要理解明白redis与操作系统底层的关系,这点很重要.这是一个优秀的学习方法,作为计算机专业,应当时刻想着技术和操作系统计算机组成数据结构的联系,听起来有些书生气死 ...
- Java之IO流技术详解
何为IO? 首先,我们看看百度给出的解释. I/O输入/输出(Input/Output),分为IO设备和IO接口两个部分. i是写入,Input的首字母.o是输出,Output的首字母. IO 也称为 ...
- day02 真正的高并发还得看IO多路复用
教程说明 C++高性能网络服务保姆级教程 首发地址 day02 真正的高并发还得看IO多路复用 本节目的 使用epoll实现一个高并发的服务器 从单进程讲起 上节从一个基础的socket服务说起我们实 ...
- 车辆跟随滑模控制的python实现
上一篇文章一个汽车跟踪问题的滑模控制实例,已经从理论上证明了可以使用滑模变结构控制策略来解决汽车跟踪问题. 下面分别采用指数趋近律.等速趋近律.准滑模控制的方法完成车辆跟随问题的仿真 import m ...
- 1.2 Linux是什么,有哪些特点?
与大家熟知的 Windows 操作系统软件一样,Linux 也是一个操作系统软件,其 logo 是一只企鹅(如图 1 所示).与 Windows 不同之处在于,Linux 是一套开放源代码程序的.可以 ...
- AspNetCore开源中间件-VueRouterHistory
前言 用过VueRouter路由组件的应该都知道,VueRouter有hash和history两种模式.hash模式会在url中插入#,history模式下url则看上去更加简洁美观.如果想要支持hi ...