bzoj4671 异或图(斯特林反演,线性基)
bzoj4671 异或图(斯特林反演,线性基)
祭奠天国的bzoj。
题解时间
首先考虑类似于容斥的东西。
设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ 为正好有 $ i $ 个连通块的方案数。
那么有
\]
斯特林反演就有
\]
其中
\]
那么考虑求 $ f_{ i } $ 。
枚举所有可能的子集划分,复杂度为 $ Bell(n) $ ,
对于每个划分,要保证划分之间的边全部不存在,
由此得出异或方程组,设秩为 $ c $ ,则对答案贡献为 $ 2^{ s - c } $ 。
线性基解决。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=12,M=62;
int n,m,len;lint ans;
char str[114];
bool mp[M][N][N];
lint fac[N];
int bl[N];
lint b[M];
void dfs(int x,int cnt)
{
if(x>n)
{
int s=0;
for(int i=1;i<=n;i++)for(int j=i+1;j<=n;j++)if(bl[i]!=bl[j])
{
lint val=0;
for(int k=1;k<=m;k++)if(mp[k][i][j]) val|=(1ll<<(k-1));
for(int k=1;k<=s;k++) if((val^b[k])<val) val^=b[k];
if(val) b[++s]=val;
}
ans+=fac[cnt]*(1ll<<(m-s));
return;
}
for(int i=1;i<=cnt+1;i++)
bl[x]=i,dfs(x+1,max(cnt,i));
}
int main()
{
read(m);for(int i=1;i<=m;i++)
{
scanf("%s",str+1);if(i==1){len=strlen(str+1);while(n*(n-1)/2!=len) n++;}
for(int j=1,o=0;j<=n;j++)for(int k=j+1;k<=n;k++) mp[i][j][k]=str[++o]-'0';
}
fac[1]=1;for(int i=2;i<=n;i++) fac[i]=fac[i-1]*(1-i);
dfs(1,0),printf("%lld\n",ans);
return 0;
}
}
int main(){return RKK::main();}
bzoj4671 异或图(斯特林反演,线性基)的更多相关文章
- BZOJ4671 异或图 斯特林反演+线性基
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...
- bzoj4671: 异或图——斯特林反演
[BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...
- BZOJ4671 异或图(容斥+线性基)
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...
- 【bzoj4671】异或图(容斥+斯特林反演+线性基)
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...
- bzoj 4671 异或图——容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- bzoj4671: 异或图
bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...
- BZOJ4671异或图
题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 ...
- P5169 xtq的异或和(FWT+线性基)
传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张 ...
随机推荐
- Solution -「SP 6779」GSS7
\(\mathcal{Description}\) 给定一棵 \(n\) 个点的带点权树,\(q\) 次操作: 路径点权赋值. 询问路径最大子段和(可以为空). \(n,q\le10^5\). ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- SpringBoot外部配置属性注入
一.命令行参数配置 Spring Boot可以是基于jar包运行的,打成jar包的程序可以直接通过下面命令运行: java -jar xx.jar 那么就可以通过命令行改变相关配置参数.例如默认tom ...
- 手把手教你把 Git 子模块更新到主项目
本文以 skywalking-rocketbot-ui子模块合并到 skywalking 为例,手把手教你如何把 Git 子模块更新到主项目中去. 首先,把fork的skywalking项目克隆到本地 ...
- 面渣逆袭:二十二图、八千字、二十问,彻底搞定MyBatis!
大家好,我是老三,面渣逆袭系列继续,这节我们的主角是MyBatis,作为当前国内最流行的ORM框架,是我们这些crud选手最趁手的工具,赶紧来看看面试都会问哪些问题吧. 基础 1.说说什么是MyBat ...
- [自动化]基于kolla-ansible部署的openstack自动化巡检生成xlsx报告
自动化巡检介绍 此巡检项目在kolla-ansible部署的openstack环境上开发,利用ansible-playbook编排的功能,对巡检的任务进行编排和数据处理.主要巡检的对象有IaaS平台和 ...
- Docker容器里部署Apache+PHP+MariaDB+phpMyAdmin
前面讲到了创建MariaDB,这次在前面的基础上搭建phpMyAdmin服务,以便友好的管理数据库MariaDB.MariaDB的docker独立出来,这样方便管理,易于扩展.这次我们基于Docker ...
- Mac下的平铺式桌面 - Yabai
Mac下的平铺式桌面 - Yabai 近来无事,凑着周末休息的时间,想折腾一下 Mac.很久之前就有朋友给我推荐过一款名为"Yabai"的平铺式桌面管理软件,今天,就折腾起来了. ...
- WIN10:IE浏览器的默认主页以及通过链接搜索的默认引擎
主页设置: 地址栏搜索引擎:
- Chrome:F12开发者模式下console不打印信息
控制台不打印信息的解决方法 你要看看你是否在之前进行过查找关键字操作,操作之后忘记删去这个关键字,导致console中只会留下对于该关键字的查询结果.