【DM论文阅读杂记】推荐系统 注意力机制
Paper Title
Real-time Attention Based Look-alike Model for Recommender System
Basic algorithm and main steps
Basic ideas
RALM is a similarity based look-alike model, which consists of user representation learning and look-alike learning. Novel points: attention-merge layer, local and global attention, on-line asynchronous seeds cluster.
1. Offline Traning
1. User Representation Learning
Treat it as multi-class classification that chooses an interest item from millions of candidates.
(1) Calculate the possibility of picking the $ i$-th item as a negative example
$ p(x_i) = \frac{log(k+2)-log(k+1)}{log(D+1)} $
$ D $: the max rank of all the items( rank by their frequency of appearance.)
$ k $: the rank of the $ i$-th item.
(2) Negative sampling: ample in a positive/negative proportion of 1/10
(3) Embedding layer
$ P(c=i|U,X_i) = \frac{e^{x_i u}}{\sum \limits_{j \in X}e^{x_j u}} $
the cross entropy loss : $ L = -\sum \limits_{j \in X} y_i log P(c=i|U,X_i) $
$ u $: a high-dimensional embedding of the user
$ x_j $: embeddings of item $ j $
$ y_i \in {0, 1} $: the label
When converge, output: the representation of user interests.
(4) Attention merge layer
Learn user-related weights for multiple fields.
\(n\) fields are embedded with the same length \(m\) as vector \(h \in R^m\), and then concatenate them in dimension 2, resulting a matrix \(H \in R^{n×m}\). Next, compute weights:
$ u = tanh(W_1H) $
$ w_i = \frac{e{W_2u_iT}}{\sum_j^n e{W_2u_jT}} $
\(W_1 \in R^{k×n}\) and \(W_2 \in R^k\) : weight matrix , \(k\) size of attention unit,
$ u \in R^n$ :the activation unit for fields, \(a ∈ R^n\) weights of fields.
Merge vector $ M \in R^m : M = aH $
Then take it as the input of the MLP layer and get universal user embedding.
2. Look-alike Learning
(1) Transforming matrix.
$ n \times m $ to $ n \times h $
(2) Local attention
To activate local interest / mine personalized info.
$ E_{local_s} = E_s softmax(tanh(E_s^T W_l E_u)) $
\(W_l \in R^{h \times h}\) : the attention matrix,
\(E_s\) : seen user $ E_u $: target user
Note: Firstly, cluster the seed users through K-means algorithm into k clusters, and for each cluster , calculate the average mean of seeds vectors.
(3) Global attention
$ E_{global_s} = E_s softmax(E_s^T tanh(W_g E_s)) $
(4) Calculate the similarity between seeds and target user
$ score_{u,s} = \alpha \cdot cosine(E_u,E_{global_s}) + \beta \cdot cosine(E_u, E_{local_s}) $
(5) Iterative training
2. Online Asynchronous Processing
Update seeds embedding database in real-time . It includes user feedback monitor and seeds clustering.
3. Online Serving
$ score_{u,s} = \alpha \cdot cosine(E_u,E_{global_s}) + \beta \cdot cosine(E_u, E_{local_s}) $
Motivation
- The "Matthew effect" becomes increasingly evident in recent recommendation systems. Many competitive long-tail contents are
difficult to achieve timely exposure because of lacking behavior
features . - Traditional look-alike models which widely used in on-line
advertising are not suitable for recommender systems because of
the strict requirement of both real-time and effectiveness.
Contribution
- Improve the effectiveness of user representation learning. Use the attention to capture various fields of interests.
- Improve the robustness and adaptivity of seeds representation learning. Use local and global attention.
- Realize a real-time and high-performance look-alike model
My own idea
Relations to what I had read
- Method of concatenating feature fields. In other paper about CTR I had read, different feature fields
are concatenated directly. It will cause overfitting in strongly-relevant fields(such as interested tags) and underfitting in to weakly-relevant fields(such as shopping interests) . Then it leads to a result that the recommended results are determined by the few strongly-relevant fields. Such models can not learn comprehensively on multi-fields features, and will lack diversity of recommended results. But in this paper, it uses attention merge to learn effective relations among different fields of user features. - Besides, it uses high-order continuous features instead of categorical features. In my opinion, if we use low-order categorical features to express the user group, we can only use statistical methods to construct the features, which will lose most of the information of the group. However, the higher-order continuous features after presentation learning actually contain the intersections of various lower-order features of users, which can more comprehensively express the information of users. Moreover, the higher-order features are generalized to avoid the expression of memory trapped in historical data.
Shortcomings and potential change I assume
- In this paper, it seems that only a few features are used to learn representation, which may limits the effect in some extends.
【DM论文阅读杂记】推荐系统 注意力机制的更多相关文章
- CAP:多重注意力机制,有趣的细粒度分类方案 | AAAI 2021
论文提出细粒度分类解决方案CAP,通过上下文感知的注意力机制来帮助模型发现细微的特征变化.除了像素级别的注意力机制,还有区域级别的注意力机制以及局部特征编码方法,与以往的视觉方案很不同,值得一看 来源 ...
- 推荐系统中的注意力机制——阿里深度兴趣网络(DIN)
参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不 ...
- [论文阅读]阿里DIN深度兴趣网络之总体解读
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...
- [论文阅读]阿里DIEN深度兴趣进化网络之总体解读
[论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...
- 自然语言处理中的自注意力机制(Self-attention Mechanism)
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力 ...
- 深度学习之注意力机制(Attention Mechanism)和Seq2Seq
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制. ...
- Pytorch系列教程-使用Seq2Seq网络和注意力机制进行机器翻译
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutor ...
- AAAI2018中的自注意力机制(Self-attention Mechanism)
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年 ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- TensorFlow从1到2(十)带注意力机制的神经网络机器翻译
基本概念 机器翻译和语音识别是最早开展的两项人工智能研究.今天也取得了最显著的商业成果. 早先的机器翻译实际脱胎于电子词典,能力更擅长于词或者短语的翻译.那时候的翻译通常会将一句话打断为一系列的片段, ...
随机推荐
- 真正“搞”懂HTTP协议12之缓存代理
我们在前两篇的内容中分别学习了缓存和代理,大致了解了缓存有哪些头字段,代理是如何服务于服务器和客户端的,那么把两者结合起来,代理缓存,也就是说代理服务器也可以缓存,当客户端请求数据的时候,未必一定要追 ...
- 简单了解C语言如何构建多文件项目
简单理解C语言如何构建工程 首先我们最好有一个好用的编辑器,vscode也好,visual studio也罢,dev也行,这里我们使用的是code::block: 一.了解C语言工程的构建原理 首 ...
- 剑指 Offer 32 - I. 从上到下打印二叉树(java解题)
目录 1. 题目 2. 解题思路 3. 数据类型功能函数总结 4. java代码 1. 题目 从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印. 例如: 给定二叉树: [3,9, ...
- Java前后端请求Content-Type与接受方式
1.Get Get方法没有请求体,所以加不加Content-Type没有意义. 参数通过拼接到Url来加入 url?key=value&key2=value2 SpringMVC后台如何获取参 ...
- STM32F4跳转函数
JMP2APP void JMP2APP(void) { pFunction Jump_To_Application; uint32_t JumpAddress; if (((*(__IO uint3 ...
- XAMPP环境下数据库密码保存文件目录(数据库密码忘记)
转自百度经验: https://jingyan.baidu.com/article/09ea3ede4e2523c0afde3943.html ---------------------------- ...
- 代码随想录算法训练营day18 | leetcode 513.找树左下角的值 ● 112. 路径总和 113.路径总和ii ● 106.从中序与后序遍历序列构造二叉树
LeetCode 513.找树左下角的值 分析1.0 二叉树的 最底层 最左边 节点的值,层序遍历获取最后一层首个节点值,记录每一层的首个节点,当没有下一层时,返回这个节点 class Solutio ...
- 05#Web 实战:可拖拽的侧边栏
效果演示图 可拖拽的左.右侧边栏的使用情况还是挺多的,博客园后台管理的左侧边栏就可以拖拽哟!效果演示如下图: HTML 代码 <div class="container"&g ...
- TextBox 事件
1.键盘事件 界面代码: <Grid> <Grid.RowDefinitions> <RowDefinition Height="auto">& ...
- js控制关闭layui的switch开关
<input class="switch" type="checkbox" lay-skin="switch" lay-filter= ...