比赛链接

A

题意

给一个字符串 \(s\) ,对其加倍,即每个字符后面追加一个相同字符。

加倍后可以重排列,要求构造一个回文串。

题解

知识点:构造。

既然可以重排列了,那顺序是随意的了,直接翻转加在原来的后面。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
string s;
cin >> s;
cout << s;
reverse(s.begin(), s.end());
cout << s << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

B

题意

构造有 \(n\) 个数的序列 \(a(1\leq a_i \leq 10^9)\) ,满足:

\[a_1 \oplus a_2 \oplus \cdots \oplus a_n = \frac{1}{n} \sum_{i=1}^{n} a_i
\]

题解

知识点:构造。

方法一

  1. \(n\) 为奇数,显然构造一样的 \(n\) 个数就行。

  2. \(n\) 为偶数,仿造奇数情况,尝试在 \(n-1\) 个数 \(a\) 后加一个数 \(b\) ,于是我们只要找到满足 \(n(a \oplus b) = (n-1)a + b\) 的 \(a\) 和 \(b\) 即可。

假设 \(a>b\) ,根据需要满足的条件可以得到 \(a \oplus b < a\) ,因此我们需要用 \(b\) 通过异或缩小 \(a\) 。

我们假设 \(b\) 只会消去一些 \(a\) 的二进制位,而不会增加,那么 \(a \oplus b = a-b\) ,从而原方程变为 \(n(a-b) = (n-1)a + b\) ,解得 \(a = (n+1)b\) 。

我们取 \(b = 1\) ,那么 \(a = n+1\) ,刚好满足两条假设 \(a>b\) 和 \(a \oplus b = a-b\) ,因此是合法的。

方法二

  1. \(n\) 为奇数,构造 \(n\) 个 \(2\) 。
  2. \(n\) 为偶数,构造 \(n-2\) 个 \(2\) ,随后 \(1\) 和 \(3\) 。

时间复杂度 \(O(n)\)

空间复杂度 \(O(1)\)

代码

方法一

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n - 1;i++) cout << n + 1 << ' ';
if (n & 1) cout << n + 1 << '\n';
else cout << 1 << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

方法二

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
if (n == 1) {
cout << 2 << '\n';
return true;
}
for (int i = 1;i <= n - 2;i++) cout << 2 << ' ';
if (n & 1) cout << 2 << ' ' << 2 << '\n';
else cout << 1 << ' ' << 3 << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

C

题意

给出 \(n,x\) ,构造一个长为 \(n\) 的排列 \(p\) ,满足 \(p_1 = x,p_n = 1\) ,且 \(p_i\) 是 \(i\) 的倍数,其中 \(2\leq i \leq n-1\) ,多个答案输出字典序最小的。

题解

方法一

知识点:构造,数论,质因子分解。

注意到 \(n \mod x \neq 0\) 时,一定不存在方案。因为 \(x\) 不是合法的位置,那么假设 \(n\) 放在任意合法的位置,那个位置的数一定会替换在他前面合法位置的数。但这些数一定是 \(n\) 的因子,那么一定不是 \(x\) 的倍数,替换到最后一定会有一个素数没地方放,因此无解。

如果有解,我们要让字典序最小。因为 \(x\) 空出来了,我们可以每次往前提最小的合法的数字,这样字典序最小。

我们可以分解 \(d = \frac {n}{x}\) 的质因子,得到 \(d = a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n}\) ,每次让当前位置下标乘上目前最小质因子的数填到当前位置,即 $p_x = a_1x,p_{a_1x} = a_12x,\cdots,p_{a_1{k_1-1}} = a_1^{k_1}x, p_{a_1^{k_1}} = a_1{k_1}a_2x,\cdots,p_{a_1{k_1}a_2^{k_2}\cdots a_n^{k_n-1}} = dx = n $ 。

时间复杂度 \(O(n)\)

空间复杂度 \(O(\sqrt n)\)

方法二

知识点:构造,数论。

\(n \mod x \neq 0\) 无解。

如果有解,我们先令排列 \(x,2,\cdots,x-1,n,x+1,\cdots,n-1,1\) ,然后把 \(n\) 往后移。设当前 \(p_{cur} = n\) ,如果一个位置 \(i\) 满足 $n \mod i = i \mod cur = 0 $ 那么可以把 \(p_i\) 和 \(p_{cur}\) 交换,这样就将小的数字往前提了。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

方法一

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n, x;
cin >> n >> x;
if (n % x) return false;
int d = n / x;
vector<int> ft;
for (int i = 2;i <= d / i;i++) {
while (d % i == 0) ft.push_back(i), d /= i;
}
if (d > 1) ft.push_back(d);
reverse(ft.begin(), ft.end());
cout << x << ' ';
int mul = 1;
for (int i = 2;i <= n - 1;i++) {
if (i == mul * x) cout << ((mul *= ft.back()) * x) << ' ', ft.pop_back();
else cout << i << ' ';
}
cout << 1 << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

方法二

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n, x;
cin >> n >> x;
if (n % x) return false;
vector<int> v(n + 1);
for (int i = 2;i <= n - 1;i++) v[i] = i;
v[1] = x;
v[x] = n;
v[n] = 1;
int cur = x;
for (int i = x + 1;i <= n - 1;i++) {
if (i % cur == 0 && n % i == 0) swap(v[cur], v[i]), cur = i;
}
for (int i = 1;i <= n;i++) cout << v[i] << ' ';
cout << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

D

题意

构造含有 \(n\) 个数的序列 \(a(1\leq a_i\leq 10^9)\) ,满足:

\[\max(a_1,a_2,\cdots,a_n) - \min(a_1,a_2,\cdots,a_n) = \sqrt{\sum_{i=1}^n a_i}
\]

题解

知识点:构造。

  1. \(n\) 为偶数时,容易构造等式结果为 \(n\) 的序列 \(n - \frac{n}{2},\cdots ,n-1,n+1,\cdots ,n - \frac{n}{2}\) 。

  2. \(n\) 为奇数时,可以仿造 \(n\) 为偶数的操作,但发现构造等式结果为 \(n\) 的序列是不可能的,原因是数字之间的间隔太小,数字大小上没有操作空间,因此尝试构造等式结果为 \(2n\) 的序列。

同样对称操作,\(3n,3n+\lfloor \frac{2n}{n-1} \rfloor,\cdots ,3n+(\lfloor \frac{n}{2} \rfloor-1) \lfloor \frac{2n}{n-1} \rfloor, 4n,5n-(\lfloor \frac{n}{2} \rfloor-1) \lfloor \frac{2n}{n-1} \rfloor,\cdots ,5n-\lfloor \frac{2n}{n-1} \rfloor,5n\) 即可。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
if (n & 1) {
int d = 2 * n / (n - 1);
for (int i = 1;i <= n / 2;i++) cout << 3 * n + (i - 1) * d << ' ';
cout << 4 * n << ' ';
for (int i = n / 2;i >= 1;i--) cout << 5 * n - (i - 1) * d << ' ';
}
else {
for (int i = n - n / 2;i <= n + n / 2;i++) if (i != n) cout << i << ' ';
}
cout << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

Codeforces Round #836 (Div. 2) A-D的更多相关文章

  1. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  2. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  3. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  6. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

  7. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  8. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

  9. Codeforces Round #268 (Div. 2) ABCD

    CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...

  10. 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts

    题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...

随机推荐

  1. 引擎之旅 Chapter.2 线程库

    预备知识可参考我整理的博客 Windows编程之线程:https://www.cnblogs.com/ZhuSenlin/p/16662075.html Windows编程之线程同步:https:// ...

  2. 微信小程序-前后端交互

    前台手机验证码登录 <view>手机号:</view> <input value="{{phone}}" bindinput="bindPh ...

  3. 全志H616基于官方外设开发-蜂鸣器

    #include <stdio.h> #include <wiringPi.h> #include <unistd.h> #define BEEP 0 //设置针脚 ...

  4. Elasticsearch启动https访问

    Elasticsearch上操作 前提:已设置密码访问 ./bin/elasticsearch-certutil ca # 生成elastic-stack-ca.p12文件 ./bin/elastic ...

  5. 论Elasticsearch数据建模的重要性

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484159&idx=1&sn=731562a ...

  6. 示例:Ingress通过互联网访问应用

    Ingress Ingress 是 Kubernetes 的一种 API 对象,将集群内部的 Service 通过 HTTP/HTTPS 方式暴露到集群外部,并通过规则定义 HTTP/HTTPS 的路 ...

  7. 驱动开发:内核CR3切换读写内存

    首先CR3是什么,CR3是一个寄存器,该寄存器内保存有页目录表物理地址(PDBR地址),其实CR3内部存放的就是页目录表的内存基地址,运用CR3切换可实现对特定进程内存地址的强制读写操作,此类读写属于 ...

  8. P7476 苦涩 题解

    Link 一道很好的复杂度均摊题目. 只需要考虑删除操作时的时间复杂度.保证复杂度的重点之一是精确定位到所有包含最大值的区间,即不去碰多余的区间.每次删除操作会删除若干个整个区间,以及至多两个区间被删 ...

  9. Spring bean装配流程和三级缓存

    马士兵 源码方法论 不要忽略源码中的注释 先梳理脉络,再深入细节 大胆猜测.小心求证 见名知意 hold on 对源码有兴趣的都是变态 为了钱! Spring IoC Spring容器帮助管理对象,不 ...

  10. 第一个微信小程序的初始化过程、小程序微信开发平台的下载、如何注册一个微信小程序的账号

    文章目录 1.注册微信小程序账号 1.1 小程序的注册流程 1.2 登录小程序账号 2.下载微信小程序开发者平台 3.新建一个小程序 3.1 点击加号 3.2 填写项目目录和小程序ID 3.3 点击确 ...