【题目描述】

参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋,也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度。

小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远,也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路则相对容易很多。

小明的决心感动了考古挖掘的赞助商, 赞助商决定免费赞助他打通一条从地面到某个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

在此基础上, 小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏屋之间的道路无需再开发。

新开发一条道路的代价是:

这条道路的长度 × 从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋)。

请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代价最小,并输出这个最小值。

【输入格式】

第一行两个用空格分离的正整数 n 和 m,代表宝藏屋的个数和道路数。

接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏屋的编号(编号为 1~n),和这条道路的长度 v。

【输出格式】

输出共一行,一个正整数,表示最小的总代价。

【样例输入1】

4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 1

【样例输出1】

4

【样例1提示】

【样例输入2】

4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 2

【样例输出2】

5

【样例2提示】

【数据规模】

对于 20%的数据:

保证输入是一棵树, 1≤n≤8, v≤5000 且所有的 v 都相等。

对于 40%的数据:

1≤n≤8, 0≤m≤1000, v≤5000 且所有的 v 都相等。

对于 70%的数据:

1≤n≤8, 0≤m≤1000, v≤ 5000

对于 100%的数据:

1≤n≤12, 0≤m≤1000, v≤ 500000

就把这道NOIP题当成回坑以后第一篇博吧(丢人

数据范围一眼状压DP,然而好像已经忘了DP怎么玩了

一顿胡乱撕烤,脑洞出一个常数巨大的解法。

F[a]表示联通状态为a的最优方案,G[a][]记录状态a的最优方案对应的每个结点深度,枚举边更新

注意到边数远超过完全图,可以预处理删掉无用边。

然而状态挂在了vector上常数过大,在洛谷上T了一个点,开O2可以A,假装自己过掉了(逃

(UPD6.15 突然发现代码放错了 噫呜呜噫)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
typedef long long LL;
int n,m;
const int mxn=;
const int N=<<;
struct edge{
int u,v,w;
int next;
}e[mxn<<];
int hd[mxn],cnt=;
void add_edge(int u,int v,int w){
e[++cnt].u=u;e[cnt].v=v;e[cnt].w=w;
e[cnt].next=hd[u];hd[u]=cnt;
return;
}
int f[N];
struct node{
int dep[];
};
vector<node>g[N];
// node tt,a;
void solve(){
int tmp=<<n;
for(int i=;i<=n;i++){
f[<<(i-)]=;
tt.dep[i-]=;
g[<<(i-)].push_back(tt);
tt.dep[i-]=;
}
for(int i=;i<tmp;i++){
// printf("tmp:%d %d\n",i,f[i]);
for(int u=;u<n;u++){
if( (i&(<<u)) ){
// printf(" u:%d\n",u);
for(int now=;now<g[i].size();now++){
// printf(" now:%d\n",now);
for(int h=hd[u];h;h=e[h].next){ int v=e[h].v;
// printf(" v:%d\n",v);
if(i&(<<v))continue;
// printf(" v:%d\n",v); int tar=i|(<<v);
// printf(" tar:%d\n",tar);
if(f[tar] > f[i] + e[h].w*g[i][now].dep[u] ){
f[tar] = f[i] + e[h].w*g[i][now].dep[u];
a=g[i][now];
a.dep[v]=g[i][now].dep[u]+;
g[tar].clear();
g[tar].push_back(a);
a.dep[v]=;
}
else if(f[tar]== (f[i] + e[h].w*g[i][now].dep[u])){
a=g[i][now];
a.dep[v]=g[i][now].dep[u]+;
g[tar].push_back(a);
a.dep[v]=;
}
}
}
}
}
}
return;
}
int mp[][];
int main(){
int i,j,u,v,w;
scanf("%d%d",&n,&m);
memset(mp,0x3f,sizeof mp);
for(i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
--u;--v;
mp[u][v]=mp[v][u]=min(mp[u][v],w);
}
for(i=;i<n;i++)
for(j=;j<n;j++)
if(mp[i][j]<0x3f3f3f3f)
add_edge(i,j,mp[i][j]);
memset(f,0x3f,sizeof(f));
solve();
printf("%d\n",f[(<<n)-]);
return ;
}

更好的解法是f[a][dep]记录联通状态为a,最深的点深度为dep的最优解,进行转移。

洛谷P3959 [NOIP2017]宝藏的更多相关文章

  1. 洛谷 P3959 NOIP2017 宝藏 —— 状压搜索

    题目:https://www.luogu.org/problemnew/show/P3959 搜索: 不是记忆化,而是剪枝: 邻接矩阵存边即可,因为显然没有那么多边. 代码如下: #include&l ...

  2. 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$

    正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...

  3. 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)

    洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...

  4. 【洛谷P3959】宝藏

    题目大意:比较复杂,点 这里 看题. 题解:对于状态压缩 dp 来讲,阶段的确立十分重要.本题中,采用以层次为阶段进行状压 dp. 设状态 \(f[i][S]\) 表示开凿到深度 \(i\),当前已经 ...

  5. NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...

  6. 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)

    洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...

  7. 洛谷P3959——宝藏

    传送门:QAQQAQ 题意: 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了$n$个深埋在地下的宝藏屋, 也给出了这$n$个宝藏屋之间可供开发的$m$条道路和它们的长度. 小明决心亲自前往挖掘所有 ...

  8. 【洛谷P3959】[NOIP2017] 宝藏

    宝藏 题目链接 首先,打了一个prim,得了45分 #include<iostream> #include<cstring> #include<cstdio> #i ...

  9. 洛谷 P3959 宝藏 解题报告

    P3959 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 \(n\) 个深埋在地下的宝藏屋, 也给出了这 \(n\) 个宝藏屋之间可供开发的 \(m\) 条道路和它们的长度. 小 ...

随机推荐

  1. 交换机、linux光衰查询

    RX收光,TX发光 一.交换机 命令: display interface transceiver brief 结果: ...... HW6851 10GE1/0/15 transceiver dia ...

  2. 软工网络15团队作业8——Beta阶段敏捷冲刺(用户使用调查报告)

    一.项目概述 1.项目名称 考研必背 2.项目简介 微信小程序,帮助考研学生记忆单词. 3.项目预期达到目标 用户无需下载app,仅通过微信小程序就可以达到背单词的目的,并且能够制定背单词的计划. 4 ...

  3. Linux内核0.11 makefile文件说明

    # # if you want the ram-disk device, define this to be the # size in blocks. # 如果要使用 RAM 就定义块的大小(注释掉 ...

  4. Windows 作为 openssl server端时的处理

    1. 跟上一个博客一样, 下载openssh 然后安装时 同时选择 server端. 2. 安装时设置密码 其他默认即可 3. xshell 创建连接. 注意 我使用的是 administrator ...

  5. web.config文件详解[转]

    一).Web.Config是以XML文件规范存储,配置文件分为以下格式1.配置节处理程序声明特点: 位于配置文件的顶部,包含在<configSections>标志中.2.特定应用程序配置特 ...

  6. 如何规范 CSS 的命名和书写

    我开始学前端的时候也是对于规范问题头疼,后来看了网易的NEC规范,惊呼牛逼 NEC : 更好的CSS样式解决方案 只遵循横向顺序即可,先显示定位布局类属性,后盒模型等自身属性,最后是文本类及修饰类属性 ...

  7. DAY4-Python学习笔记

    1.XML: 操作XML有两种方法:DOM和SAX DOM:把整个XML读入内存,解析为树,因此占用内存大,解析慢,优点是可以任意遍历树的节点 SAX:是流模式,边读边解析,占用内存小,解析快,缺点是 ...

  8. BZOJ3142 HNOI2013数列(组合数学)

    考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...

  9. IbatisNet连接oracle 报错

    提示什么 connect oracle   1.5.0.xxxx 将你本机的oracle 客户端版本重装换成32位即可

  10. 洛谷 P1850 换教室 解题报告

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1≤i≤n) ...