Description

The company \(X\) has \(n\) employees numbered from \(1\) through \(n\). Each employee \(u\) has a direct boss \(p_u\) \((1 \le p_u \le n)\), except for the employee \(1\) who has no boss. It is guaranteed, that values \(p_i\) form a tree. Employee \(u\) is said to be in charge of employee \(v\) if \(u\) is the direct boss of \(v\) or there is an employee \(w\) such that \(w\) is in charge of \(v\) and \(u\) is the direct boss of \(w\). Also, any employee is considered to be in charge of himself.

In addition, for each employee \(u\) we define it's level \(lv(u)\) as follow:

  • \(lv(1)=0\)
  • \(lv(u)=lv(p_u)+1\) for \(u \neq 1\)

In the near future, there are \(q\) possible plans for the company to operate. The \(i\)-th plan consists of two integers \(l_i\) and \(r_i\), meaning that all the employees in the range \([l_i,r_i]\), and only they, are involved in this plan. To operate the plan smoothly, there must be a project manager who is an employee in charge of all the involved employees. To be precise, if an employee \(u\) is chosen as the project manager for the \(i\)-th plan then for every employee \(v \in [l_i,r_i]\), \(u\) must be in charge of \(v\). Note, that \(u\) is not necessary in the range \([l_i,r_i]\). Also, \(u\) is always chosen in such a way that \(lv(u)\) is as large as possible (the higher the level is, the lower the salary that the company has to pay the employee).

Before any plan is operated, the company has JATC take a look at their plans. After a glance, he tells the company that for every plan, it's possible to reduce the number of the involved employees exactly by one without affecting the plan. Being greedy, the company asks JATC which employee they should kick out of the plan so that the level of the project manager required is as large as possible. JATC has already figured out the answer and challenges you to do the same.

Input

The first line contains two integers \(n\) and \(q\) \((2 \le n \le 100000, 1 \le q \le 100000)\) — the number of employees and the number of plans, respectively.

The second line contains \(n−1\) integers \(p_2,p_3,…,p_n(1≤p_i≤n)\) meaning \(p_{i}\) is the direct boss of employee \(i\).

It is guaranteed, that values \(p_{i}\) form a directed tree with the root of \(1\).

Each of the following \(q\) lines contains two integers \(l_i\) and \(r_i\) \((1 \le l_i < r_i \le n)\) — the range of the employees, involved in the corresponding plan.

Output

Print \(q\) lines, each containing two integers — the number of the employee which should be kicked from the corresponding plan and the maximum possible level of the project manager in that case.

If there are more than one way to choose that employee, print any of them.

Example

Input

11 5
1 1 3 3 3 4 2 7 7 6
4 6
4 8
1 11
9 11
8 11

Output

4 1
8 1
1 0
11 3
8 1

Note

In the example:

In the first query, we can choose whether \(4\) or \(5\) or \(6\) and the project manager will be \(3\).

In the second query, if we choose any employee other than the employee \(8\), the project manager will be \(1\). If we choose \(8\), the project manager will be \(3\). Since \(lv(3)=1 \gt lv(1)=0\), choosing \(8\) is the best strategy.

In the third query, no matter how we choose the employee, the project manager will always be \(1\).

In the fourth query, if we choose \(9\) or \(10\) then the project manager will be \(3\). If we choose \(11\) then the project manager will be \(7\). Since \(lv(7)=3 \gt lv(3)=1\), we choose \(11\) as the answer.

Solution

题意:给一棵树,\(n\)个点,\(q\)次询问,每次询问给定一个区间\([l, r]\),要求忽略掉\([l, r]\)中的一个点,使得剩下的$r - l $个点的LCA的深度最大,问应该忽略哪个点,忽略后的最大深度是多少。

首先求一次DFS序,对于任意点\(u\),其DFS序记为\(order[u]\)。给定区间\([l, r]\),设其中DFS序最大和最小的点分别为\(u\)和\(v\),则\(LCA[l, r]\)就是\(LCA(u, v)\)。我们可以简单证明一下,不妨设\(r = LCA(u, v)\),点\(x\)不属于以\(r\)为根的子树(记作\(SubTree(r)\))当且仅当\(order[x]\)满足以下两种情况中的一种:

  • \(order[x] \lt order[r]​\),即\(x​\)在\(r​\)之前被访问
  • \(order[x] > order[i], \forall i \in SubTree(r)\),即\(x\)在\(SubTree(r)\)之后才被访问

显然,\([l, r]\)中的任何一个点都不满足上述两个条件,所以\([l, r]\)中的每个点都属于以\(r\)为根的子树,所以它们的LCA就是\(r\)。

回到我们的问题,对于每次询问,给定\([l, r]\),我们先求出其中DFS序最大、最小的点\(u, v\)以及它们的LCA \(r\)。显然,忽略\(u\)和\(v\)之外的节点对并不会改变LCA;如果忽略\(u\),那么新的LCA就是\(LCA[l, u-1]\)和\(LCA[u + 1, r]\)的LCA,我们称之为\(r_1\);同理,忽略\(v\)也可以得到一个新的LCA,我们称之为\(r_2\)。选择\(r, r_1, r_2\)中深度最大的点,我们就得到了答案。

#include <bits/stdc++.h>
using namespace std;
const int maxn = 100011;
const int maxp = 18;
vector<int> w[maxn];
int idx, dfsod[maxn], invdfsod[maxn];
int fa[maxn][maxp], dep[maxn];
void bfs(int root) {
queue<int> que;
dep[root] = 0;
fa[root][0] = root;
que.push(root);
while (!que.empty()) {
int u = que.front();
que.pop();
for (int i = 1; i < maxp; i++)
fa[u][i] = fa[fa[u][i - 1]][i - 1];
for (int v : w[u]) {
if (v == fa[u][0]) continue;
dep[v] = dep[u] + 1;
fa[v][0] = u;
que.push(v);
}
}
}
int lca(int u, int v) {
if (dep[u] > dep[v])
swap(u, v);
for (int gap = dep[v] - dep[u], i = 0; gap; gap >>= 1, i++) {
if (gap & 1)
v = fa[v][i];
}
if (u == v) return u;
for (int i = maxp - 1; i >= 0; i--) {
if (fa[u][i] == fa[v][i])
continue;
u = fa[u][i], v = fa[v][i];
}
return fa[u][0];
}
void dfs(int u, int pre = -1) {
dfsod[u] = ++idx;
invdfsod[idx] = u;
for (int v : w[u]) {
if (v == pre) continue;
dfs(v, u);
}
}
struct node {
int l, r, mx, mn;
} seg[maxn << 2];
void pushup(int x) {
seg[x].mx = max(seg[x << 1].mx, seg[x << 1 | 1].mx);
seg[x].mn = min(seg[x << 1].mn, seg[x << 1 | 1].mn);
}
void build(int x, int l, int r) {
seg[x].l = l, seg[x].r = r;
if (l == r) {
seg[x].mx = seg[x].mn = dfsod[l];
return;
}
int m = (l + r) >> 1;
build(x << 1, l, m);
build(x << 1 | 1, m + 1, r);
pushup(x);
}
pair<int, int> query(int x, int l, int r) {
int L = seg[x].l, R = seg[x].r;
if (l <= L && r >= R)
return make_pair(seg[x].mn, seg[x].mx);
int m = (L + R) >> 1;
int mx = 0, mn = 1 << 30;
if (l <= m) {
auto v = query(x << 1, l, r);
mn = min(mn, v.first);
mx = max(mx, v.second);
}
if (r > m) {
auto v = query(x << 1 | 1, l, r);
mn = min(mn, v.first);
mx = max(mx, v.second);
}
return make_pair(mn, mx);
}
// 区间[l, r]的LCA
int getlca(int l, int r) {
if (l > r) return -1;
auto x = query(1, l, r);
int u = invdfsod[x.first], v = invdfsod[x.second];
return lca(u, v);
}
// 忽略u后,区间[l, r]的LCA
int getlca(int l, int r, int u) {
int a = getlca(l, u - 1), b = getlca(u + 1, r);
if (a == -1) return b;
if (b == -1) return a;
return lca(a, b);
}
int main() {
int n, q;
scanf("%d%d", &n, &q);
for (int i = 2; i <= n; ++i) {
int x; scanf("%d", &x);
w[x].push_back(i);
w[i].push_back(x);
}
bfs(1);
dfs(1);
build(1, 1, n);
dep[0] = -1;
while (q--) {
int l, r;
scanf("%d%d", &l, &r);
auto x = query(1, l, r);
int u = invdfsod[x.first], v = invdfsod[x.second];
int c = lca(u, v), a = getlca(l, r, u), b = getlca(l, r, v);
int mx = max(dep[c], max(dep[a], dep[b])), y;
if (mx == dep[c]) y = l;
else if (mx == dep[a]) y = u;
else y = v;
printf("%d %d\n", y, mx);
}
return 0;
}

CodeForces 1062E Company的更多相关文章

  1. Codeforces 1090A - Company Merging - [签到水题][2018-2019 Russia Open High School Programming Contest Problem A]

    题目链接:https://codeforces.com/contest/1090/problem/A A conglomerate consists of n companies. To make m ...

  2. Codeforces 1062E 题解

    给出一棵有根树,1为根结点,接下来q次询问,每次给出一个[l,r]区间,现在允许删掉[l,r]区间内任何一个点,使得所有点的最近公共祖先的深度尽可能大,问删掉的点是哪个点,深度最大是多少. 做法: 线 ...

  3. CodeForces 1025G Company Acquisitions

    题意 描述有点麻烦,就不写了. \(\texttt{Data Range:}1\leq n\leq 500\) 题解 势能函数这个东西好神啊-- 这个题目用常规的 DP 好像做不出来,所以我们可以考虑 ...

  4. Codeforces 556D Restructuring Company

    传送门 D. Restructuring Company time limit per test 2 seconds memory limit per test 256 megabytes input ...

  5. Codeforces Round #321 (Div. 2) B. Kefa and Company 二分

    B. Kefa and Company Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/pr ...

  6. [刷题]Codeforces 794C - Naming Company

    http://codeforces.com/contest/794/problem/C Description Oleg the client and Igor the analyst are goo ...

  7. CodeForces 125E MST Company

    E. MST Company time limit per test 8 seconds memory limit per test 256 megabytes input standard inpu ...

  8. Codeforces 1062 E - Company

    E - Company 思路: 首先,求出每个点的dfs序 然后求一些点的公共lca, 就是求lca(u, v), 其中u是dfs序最大的点, v是dfs序最小的大点 证明: 假设o是这些点的公共lc ...

  9. Codeforces Round #520 (Div. 2) E. Company(dfs序判断v是否在u的子树里+lca+线段树)

    https://codeforces.com/contest/1062/problem/E 题意 给一颗树n,然后q个询问,询问编号l~r的点,假设可以删除一个点,使得他们的最近公共祖先深度最大.每次 ...

随机推荐

  1. 安装 jemalloc for mysql

    参考: MySQL bug:https://bugs.mysql.com/bug.php?id=83047&tdsourcetag=s_pcqq_aiomsg https://github.c ...

  2. Python学习---装饰器/迭代器/生成器的学习【all】

    Python学习---装饰器的学习1210 Python学习---生成器的学习1210 Python学习---迭代器学习1210

  3. 成为技术领导者笔记--领导的MOI模型

    一. 想让周围环境发生变化,环境必须包含三个条件: M:激励(Motivation)---有奖品或有困难,这样才对相关人员有推动力或吸引力. O:组织(organization)---利用现有的组织结 ...

  4. Android混合式开发(Hybrid)

    安卓混合式开发(Hybrid) 1 环境搭建 1.1 首先,下载 Android Studio (Intellij Idea) 下载地址:http://www.android-studio.org/ ...

  5. lambda表达式和groovy闭包的区别

    groovy定义的闭包是 Closure 的实例,lambda表达式只是在特定的接⼝或者抽象类的匿名实现,他们之间最主要区别闭包可以灵活的配置代理策略⽽labmda表达式不允许

  6. 【转载】Spring最佳后台框架

    https://www.quora.com/What-is-the-best-backend-arquitecture-using-spring-framework The most modern a ...

  7. 对于socket发送数据时是否要加锁及write read的阻塞非阻塞

    偶尔讨论到了socket发送数据时是否应该加锁的问题,就在网上查了一下,下面是大神陈硕的答案 对于 UDP,多线程读写同一个 socket 不用加锁,不过更好的做法是每个线程有自己的 socket,避 ...

  8. Spring中手动增加配置文件中占位符引用的变量

    在项目中遇到一个这样的需求,项目的配置文件由外部传入,这时spring配置文件那些占位符变量该如何取值呢? 解决这个问题的做法有几种,我想到的大概有以下三种: 1.通过系统属性来实现,把外部传入的配置 ...

  9. Rabbitmq.md

    RabbitMQ介绍 什么是RabbitMQ RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性.扩展性.高可用性等方面 ...

  10. CF585D Lizard Era: Beginning

    嘟嘟嘟 题面我是不会咕的(没有真香):有\(n(n \leqslant 25)\)个任务和三个人,每次任务给出每个人能得到的值,每次任务选两个人,使\(n\)个任务结束后三个人得到的值是一样的,且尽量 ...