洛谷 P4593 [TJOI2018]教科书般的亵渎
洛谷 P4593 [TJOI2018]教科书般的亵渎
神仙伯努利数。。。网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了?
题目本质要求\(\sum_{i=1}^{n}i^k\)
伯努利数,\(B_0=1,B_i=-\frac{\sum_{j=0}^{i-1}C_{n+1}^jB_j}{i+1}(i>0)\)
就这玩意(什么鬼)。。。
然后就神仙的有\(\sum_{i=1}^{n}i^k=\frac{\sum_{i=1}^{k+1}C_{k+1}^{i}B_{k+1-i}(n+1)^{i}}{k+1}\)了?
不会证啊QAQ
#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 1000000007
typedef long long ll;
il ll gi(){
ll x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
il ll pow(ll x,ll y){
ll ret=1;
while(y){
if(y&1)ret=ret*x%mod;
x=x*x%mod;y>>=1;
}
return ret;
}
ll k,a[101],B[101],C[101][101],inv[101];
il ll query(ll x){
ll ret=0;
for(int i=1;i<=k+1;++i)ret+=C[k+1][i]*B[k+1-i]%mod*pow((x+1)%mod,i)%mod;
return ret%mod*inv[k+1]%mod;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("4593.in","r",stdin);
freopen("4593.out","w",stdout);
#endif
ll T=gi(),n,m;
C[0][0]=1;
for(int i=1;i<101;++i){
C[i][0]=1;
for(int j=1;j<=i;++j)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
inv[1]=1;for(int i=2;i<101;++i)inv[i]=(mod-(mod/i)*inv[mod%i]%mod)%mod;
B[0]=1;
for(int i=1;i<101;++i){
B[i]=0;
for(int j=0;j<i;++j)B[i]+=C[i+1][j]*B[j]%mod;
B[i]=(mod-B[i]%mod*inv[i+1]%mod)%mod;
}
while(T--){
n=gi(),m=gi();k=m+1;
for(int i=1;i<=m;++i)a[i]=gi();
std::sort(a+1,a+m+1);
ll ans=0;
a[++m]=n+1;
for(int i=1;i<=m;++i){
for(int j=i;j<=m;++j)ans+=(query(a[j]-1)-query(a[j-1])+mod)%mod;
for(int j=m;j>=i;--j)a[j]-=a[i];
}
printf("%lld\n",ans%mod);
}
return 0;
}
洛谷 P4593 [TJOI2018]教科书般的亵渎的更多相关文章
- 洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】
题目链接 洛谷P4593 题解 orz dalao upd:经典的自然数幂和,伯努利数裸题 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{ ...
- 洛谷P4593 [TJOI2018]教科书般的亵渎
小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\),且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果 ...
- 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...
- P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...
- Luogu P4593 [TJOI2018]教科书般的亵渎
亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...
- 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎
题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...
- p4593 [TJOI2018]教科书般的亵渎
分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...
- 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
随机推荐
- 给UIScrollView添加category实现UIScrollView的轮播效果
给UIScrollView添加category实现UIScrollView的轮播效果 大家都知道,要给category添加属性是必须通过runtime来实现的,本教程中给UIScrollView添加c ...
- 使用ModelForm表单验证
1.定义model.py model中定义的字段类型,只有在通过form进行验证的时候才有效,数据库中的字段类型与其并不完全一致,如数据库中并没有ipaddress类型.如果不通过form对字段进行验 ...
- Custom Settings.ini 和 bootstrap.ini 配置
[Settings]Priority=DefaultProperties=MyCustomProperty [Default] ;SkipWizard=YES 如果跳过部署向导,则即使 SkipCap ...
- C++:sprintf()的用法(转)
转:http://blog.csdn.net/masikkk/article/details/5634886 更多:http://blog.csdn.net/zjuwispersure/article ...
- zabbix的日常监控-磁盘性能监控(十二)
监控磁盘的性能 参考文章: https://wiki.enchtex.info/howto/zabbix/zabbix_iostat_monitoring https://blog.csdn.net/ ...
- Git操作(基础篇)
Git操作(基础篇) Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目.Git的读音为/gɪt/.Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很小到非常 ...
- eoLinker-AMS接口管理系统
多端阅读<eoLinker-AMS接口管理系统>: 在PC/MAC上查看:下载w3cschool客户端,进入客户端后通过搜索当前教程手册的名称并下载,就可以查看当前离线教程文档.下载eoL ...
- Vue2+Webpack创建vue项目
相比较AngularJS和ReactJS,VueJS一直以轻量级,易上手称道.MVVM的开发模式也使前端从原先的DOM中解放出来,我们在不需要在维护视图和数据的统一上花大量时间,只需要关注于data的 ...
- TensorFlow Activation Function 1
部分转自:https://blog.csdn.net/caicaiatnbu/article/details/72745156 激活函数(Activation Function)运行时激活神经网络中某 ...
- ZOJ 3981 && 2017CCPC秦皇岛 A:Balloon Robot(思维题)
A - Balloon Robot Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu Sub ...