D. Expected diameter of a tree
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Pasha is a good student and one of MoJaK's best friends. He always have a problem to think about. Today they had a talk about the following problem.

We have a forest (acyclic undirected graph) with n vertices and m edges. There are q queries we should answer. In each query two vertices v and u are given. Let V be the set of vertices in the connected component of the graph that contains v, and U be the set of vertices in the connected component of the graph that contains u. Let's add an edge between some vertex  and some vertex in  and compute the value d of the resulting component. If the resulting component is a tree, the value d is the diameter of the component, and it is equal to -1 otherwise. What is the expected value of d, if we choose vertices a and b from the sets uniformly at random?

Can you help Pasha to solve this problem?

The diameter of the component is the maximum distance among some pair of vertices in the component. The distance between two vertices is the minimum number of edges on some path between the two vertices.

Note that queries don't add edges to the initial forest.

Input

The first line contains three integers nm and q(1 ≤ n, m, q ≤ 105) — the number of vertices, the number of edges in the graph and the number of queries.

Each of the next m lines contains two integers ui and vi (1 ≤ ui, vi ≤ n), that means there is an edge between vertices ui and vi.

It is guaranteed that the given graph is a forest.

Each of the next q lines contains two integers ui and vi (1 ≤ ui, vi ≤ n) — the vertices given in the i-th query.

Output

For each query print the expected value of d as described in the problem statement.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6. Let's assume that your answer is a, and the jury's answer is b. The checker program will consider your answer correct, if .

Examples
input
3 1 2
1 3
3 1
2 3
output
-1
2.0000000000
input
5 2 3
2 4
4 3
4 2
4 1
2 5
output
-1
2.6666666667
2.6666666667
Note

In the first example the vertices 1 and 3 are in the same component, so the answer for the first query is -1. For the second query there are two options to add the edge: one option is to add the edge 1 - 2, the other one is 2 - 3. In both ways the resulting diameter is 2, so the answer is 2.

In the second example the answer for the first query is obviously -1. The answer for the second query is the average of three cases: for added edges 1 - 2 or 1 - 3 the diameter is 3, and for added edge 1 - 4 the diameter is 2. Thus, the answer is .

题意:

给出一个森林,q次询问,每次问把x,y两点所属的树之间任意连接一条边形成新的树的直径的期望,如果x和y在同一棵树中输出-1;

代码:

//这题算出复杂度也就解出来了。先枚举一棵树中的节点然后二分找另一棵树中的节点满足两个节点之间的距离不小于max(树1直径,
//树2直径),他们的贡献就是各自在自己树中最远能到达的端点的距离相加再+1,否则贡献就是max(树1直径,树2直径),这样看似是
//q*n*long(n),但是注意到所有的树的大小总和是n所以最坏是sqrt(n)棵树每棵树大小是sqrt(n),所以是q*sqrt(n)*long(n);
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=;
int fa[MAXN],head[MAXN],tot,n,cnt,m,q,d[MAXN],f[MAXN],deep,o,oo,root[MAXN];
int a[MAXN],aa;
double size[MAXN];
map<pair<int,int>,double>mp;
vector<ll>v[MAXN],vv[MAXN];
struct Edge { int u,v,next; }edge[MAXN*];
void init()
{
tot=cnt=;
memset(head,-,sizeof(head));
memset(fa,-,sizeof(fa));
memset(f,,sizeof(f));
memset(d,-,sizeof(d));
}
void add(int x,int y)
{
edge[tot].u=x;edge[tot].v=y;
edge[tot].next=head[x];
head[x]=tot++;
edge[tot].u=y;edge[tot].v=x;
edge[tot].next=head[y];
head[y]=tot++;
}
void dfs1(int x,int father,int p)
{
v[p].push_back(x);
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].v;
if(y==father) continue;
fa[y]=p;
dfs1(y,x,p);
}
}
void dfs2(int x,int father,int sum,bool w)
{
if(w!=) f[x]=max(f[x],sum);
if(sum>=deep){
deep=sum;
if(w==) o=x;
else if(w==) oo=x;
}
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].v;
if(y==father) continue;
dfs2(y,x,sum+,w);
}
}
int main()
{
//freopen("in.txt","r",stdin);
init();
scanf("%d%d%d",&n,&m,&q);
for(int i=;i<m;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++){
if(fa[i]!=-) continue;
fa[i]=++cnt;
v[cnt].clear();vv[cnt].clear();
dfs1(i,,cnt);
root[cnt]=i;
}
for(int i=;i<=cnt;i++){
deep=;
dfs2(root[i],,,);
deep=;
dfs2(o,,,);
d[i]=deep;
dfs2(oo,,,);
aa=v[i].size();
for(int j=;j<aa;j++) a[j]=f[v[i][j]];
v[i].clear();
for(int j=;j<aa;j++) v[i].push_back(a[j]);
sort(v[i].begin(),v[i].end());
a[aa]=;
for(int j=aa-;j>=;j--) a[j]=a[j+]+v[i][j]+;
for(int j=;j<=aa;j++) vv[i].push_back(a[j]);
}
while(q--){
int x,y;
scanf("%d%d",&x,&y);
if(fa[x]==fa[y]) printf("-1\n");
else{
pair<int,int>p1(fa[x],fa[y]);
if(mp[p1]>) printf("%.6f\n",mp[p1]);
else{
double ans=;
int xx=fa[x],yy=fa[y];
if(v[xx].size()<=v[yy].size()){
for(int i=;i<v[xx].size();i++){
ll tmp=lower_bound(v[yy].begin(),v[yy].end(),max(d[xx],d[yy])-v[xx][i]-)-v[yy].begin();
ans+=(vv[yy][tmp]+v[xx][i]*(v[yy].size()-tmp))+tmp*max(d[xx],d[yy]);
}
}else{
for(int i=;i<v[yy].size();i++){
ll tmp=lower_bound(v[xx].begin(),v[xx].end(),max(d[xx],d[yy])-v[yy][i]-)-v[xx].begin();
ans+=(vv[xx][tmp]+v[yy][i]*(v[xx].size()-tmp))+tmp*max(d[xx],d[yy]);
}
}
double tmp1=v[xx].size(),tmp2=v[yy].size();
ans/=(tmp1*tmp2);
printf("%.6f\n",ans);
mp[p1]=ans;
}
}
}
return ;
}

Codeforces 804D Expected diameter of a tree的更多相关文章

  1. Codeforces 804D Expected diameter of a tree(树的直径 + 二分 + map查询)

    题目链接 Expected diameter of a tree 题目意思就是给出一片森林, 若把任意两棵树合并(合并方法为在两个树上各自任选一点然后连一条新的边) 求这棵新的树的树的直径的期望长度. ...

  2. Codeforces 804D Expected diameter of a tree(树形DP+期望)

    [题目链接] http://codeforces.com/contest/804/problem/D [题目大意] 给你一个森林,每次询问给出u,v, 从u所在连通块中随机选出一个点与v所在连通块中随 ...

  3. Codeforces 840D Expected diameter of a tree 分块思想

    Expected diameter of a tree 我们先两次dfs计算出每个点能到达最远点的距离. 暴力计算两棵树x, y连边直径的期望很好求, 我们假设SZ(x) < SZ(y) 我们枚 ...

  4. CodeForces 805F Expected diameter of a tree 期望

    题意: 给出一个森林,有若干询问\(u, v\): 从\(u, v\)中所在子树中随机各选一个点连起来,构成一棵新树,求新树直径的期望. 分析: 回顾一下和树的直径有关的东西: 求树的直径 从树的任意 ...

  5. CF804D Expected diameter of a tree 树的直径 根号分治

    LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) ...

  6. Codeforces Round #411 (Div. 1) D. Expected diameter of a tree

    题目大意:给出一个森林,每次询问给出u,v,问从u所在连通块中随机选出一个点与v所在连通块中随机选出一个点相连,连出的树的直径期望(不是树输出-1).(n,q<=10^5) 解法:预处理出各连通 ...

  7. codeforces804D Expected diameter of a tree

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  8. 543. Diameter of Binary Tree

    https://leetcode.com/problems/diameter-of-binary-tree/#/description Given a binary tree, you need to ...

  9. LeetCode 543. Diameter of Binary Tree (二叉树的直径)

    Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...

随机推荐

  1. OGG 跳过事务(转)

    http://blog.chinaunix.net/uid-26190993-id-3434074.html    在OGG运行过程中,通常会因为各种各样的原因导致容灾端的REPLICAT进程ABEN ...

  2. javascript常用方法和技巧

    浏览器变编辑器 data:text/html, <style type=;right:;bottom:;left:;}</style><div id="e" ...

  3. 如何获取启动页activity

    启动页activity指App启动的第一个activity,介绍几种查看启动页activity的方法: 方法一:问开发,最有效的获取方式 方法二:dumpsys package 包名,前提是知道包名( ...

  4. linux 常用命令-ps命令

    ps(process status):进程状态相关命令 1.

  5. BloomFilter——大规模数据处理利器(爬虫判重)

    http://www.cnblogs.com/heaad/archive/2011/01/02/1924195.html Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快 ...

  6. ns-3 可视化模拟 (一) PyViz

    PyViz 个人觉得这个的使用简单. (1)首先安装 这是ubuntu下的 sudo apt-get install python-dev python-pygraphviz python-kiwi ...

  7. 浅学JavaScript

    JavaScript是互联网上最流行的脚本语言,可广泛用于服务器.PC.笔记本电脑智能手机等设备: 对事件的反应: <!DOCTYPE html> <html> <hea ...

  8. Appium 服务关键字(转)

    来源: https://github.com/appium/appium/blob/master/docs/cn/writing-running-appium/caps.cn.md#appium-服务 ...

  9. windows 下升级安装mysql8,与旧版本5.6共存

    应开发需求,自mysql5.7开始引入json列类型和相关函数.为了提高数据读写的访问效率因此把数据库从mysql 5.6版升级到最新发行版 mysql 8.0.11 . 特此记录下多版本升级共存的过 ...

  10. 工作中常用到的Linux命令

    ps: (ps的参数分成basic, list, output, thread, miscellaneous) (basic) -e / -A 显示所有进程 (output) -o 输出指定字段 ls ...