https://www.lydsy.com/JudgeOnline/problem.php?id=3155

最朴素的想法是两棵树状数组,一个记录前缀和,一个记录前缀前缀和,但是第二个我们非常不好修改

但其实我们发现$SS_i=i*a1+(i-1)*a2+…+ai$,我们可以试图构造这样的“类等差”数列,这样我们就可以通过加加减减就能做了。

为了照顾最后一位的查询,我们就维护$(n-i+1)*ai$吧!

于是我们修改就变成了两个单点修改了,查询也就是很简单了,$qry(x,1)-qry(x,0)*(n-x)$(前一个是第二棵树状数组,后面的是第一棵)。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int a[N],n,m;
ll tr[N][];
inline int lowbit(int t){return t&-t;}
inline void add(int x,ll y,int on){
for(int i=x;i<=n;i+=lowbit(i))tr[i][on]+=y;
}
inline ll qry(int x,int on){
ll res=;
for(int i=x;i;i-=lowbit(i))res+=tr[i][on];
return res;
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++){
add(i,a[i]=read(),);
add(i,(ll)(n-i+)*a[i],);
}
while(m--){
char ch[];
scanf("%s",ch);
if(ch[]=='Q'){
int x=read();
printf("%lld\n",qry(x,)-qry(x,)*(n-x));
}else{
int x=read(),y=read();
add(x,y-a[x],);
add(x,(ll)(n-x+)*(y-a[x]),);
a[x]=y;
}
}
return ;
}

BZOJ3155:Preprefix sum——题解的更多相关文章

  1. [bzoj3155]Preprefix sum(树状数组)

    3155: Preprefix sum Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 1183  Solved: 546[Submit][Status] ...

  2. BZOJ3155: Preprefix sum

    题解: 写过树状数组搞区间修改和区间求和的就可以秒出吧... 代码: #include<cstdio> #include<cstdlib> #include<cmath& ...

  3. BZOJ3155:Preprefix sum(线段树)

    Description Input 第一行给出两个整数N,M.分别表示序列长度和操作个数 接下来一行有N个数,即给定的序列a1,a2,....an 接下来M行,每行对应一个操作,格式见题目描述 Out ...

  4. 树状数组【bzoj3155】: Preprefix sum

    3155: Preprefix sum 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3155 把给出的a_i当成查分数组d_i做就可以了 ...

  5. BZOJ 3155: Preprefix sum( 线段树 )

    刷刷水题... 前缀和的前缀和...显然树状数组可以写...然而我不会, 只能写线段树了 把改变成加, 然后线段树维护前缀和, 某点p加, 会影响前缀和pre(x)(p≤x≤n), 对[p, n]这段 ...

  6. Preprefix sum BZOJ 3155 树状数组

    题目描述 前缀和(prefix sum)Si=∑k=1iaiS_i=\sum_{k=1}^i a_iSi​=∑k=1i​ai​. 前前缀和(preprefix sum) 则把SiS_iSi​作为原序列 ...

  7. 3155: Preprefix sum

    3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...

  8. 差分+树状数组【p4868】Preprefix sum

    Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...

  9. Ural 1248 Sequence Sum 题解

    目录 Ural 1248 Sequence Sum 题解 题意 题解 程序 Ural 1248 Sequence Sum 题解 题意 给定\(n\)个用科学计数法表示的实数\((10^{-100}\s ...

随机推荐

  1. PHP的学习路线规划

    第一阶段:WEB的快速入门 前期入门学习我们需要学一些HTML+CSS+JS前端的一些技术,这个阶段不需要太深入的学习,学习到可以制作出一个像样点的静态页面就可以了.因为大家是学习PHP,对于新人来说 ...

  2. (1) Python 数据类型功能

    1.int 将字符串转化为数字 a="123"  print(type(a),a) b=int(a)  print(type(b),b) num="0011" ...

  3. nginx中location详解

    Location block 的基本语法形式是: location [=|~|~*|^~|@] pattern { ... } [=|~|~*|^~|@] 被称作 location modifier ...

  4. sprint2(第二天)

    昨天没有想到餐桌的功能,今天加到展板.然后今天我们完成了餐桌模板,可以实现添加桌子的桌号.人数.修改和删除功能.不过由于今天学校网络不是很好,晚上我们clone了很久都没clone下来,所以没有上传代 ...

  5. Scurm Meeting 11.2

    成员 今日任务 明日计划 用时 徐越 写功能规格说明书,代码移植 创建数据库,代码移植 3h 赵庶宏 编写功能规格说明书,学习访问数据库代码,代码迁移 代码迁移 5h 武鑫 设计界面:独立完成一些简单 ...

  6. DataTime日期格式化

    C# DateTime日期格式化 在C#中DateTime是一个包含日期.时间的类型,此类型通过ToString()转换为字符串时,可根据传入给Tostring()的参数转换为多种字符串格式. 目录 ...

  7. 软工1816 · Beta冲刺(7/7)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 协助完成安卓端的整合 完成安卓端的美化 协助制作宣传视频 接下来的计划 &am ...

  8. self和super关键字介绍

    1.self和super OC提供两个保留字self 和 super ,用在方法定义中 OC语言中的self, 就相当于C++和Java中的this指针,学会使用self 首先要搞清楚属性这一概念以及 ...

  9. 团队作业5-Alpha版本测试报告(彼岸芳华队)

    请根据团队项目中软件的需求文档.功能说明.系统设计和测试计划,写出软件的测试过程和测试结果,并回答下述问题. 一.在测试过程中总共发现了多少Bug?每个类别的Bug分别为多少个?(10分) 在测试过程 ...

  10. 对于Redis的了解

    Redis :高性能的key-value数据库,支持存储的value类型包括字符串.链表.集合.有序集合.哈希类型. redis使用两种文件格式:全量数据和增量请求. 全量数据格式是将内存中的数据写入 ...