【科技】扩展Lucas随想
扩展Lucas解决的还是一个很Simple的问题:
求:$C_{n}^{m} \; mod \; p$。
其中$n,m$都会比较大,而$p$不是很大,而且不一定是质数。
扩展Lucas可以说和Lucas本身并没有什么关系,重要的是中国剩余定理。扩展Lucas这个算法中教会我们的除了算组合数,还有在模数不是质数的时候,往往可以用$CRT$来合并答案。
将原模数质因数分解:$P = \prod\limits_{i = 1}^{m} p_{i}^{k_{i}}$。
列出$m$个同余方程,第$i$个形如:$C_{n}^{m} \; \equiv a_{i} (mod \; p_{i}^{k_{i}})$。
由于$m$个方程中模数互质,则$CRT$后就是原答案。
现在来对于某个方程求解$a_{i}$是多少,即$C_{n}^{m} \; mod \; p^{k}$的答案。
把组合数转化成阶乘:$\frac{n!}{m!(n - m)!}$,我们先求一个阶乘在$mod \; p^{k}$下的值,设这个函数为$Fac(n)$。
常规的对于式子下方的阶乘我们需要求逆元,而阶乘中存在$p$的倍数,这意味可能不与$p^{k}$互质。为了解决这个问题,我们将有关$p$单独考虑,于是一个算阶乘的函数将包括两部分:
- 首先考虑所有$p$的倍数,总共有$\lfloor \frac{n}{p} \rfloor$个,将$p$提出来,这$\lfloor \frac{n}{p} \rfloor$个数又成为一个阶乘的形式,递归即可,总层数不会超过$log$。这部分的答案就是$p^{\lfloor \frac{n}{p} \rfloor} * Fac(\lfloor \frac{n}{p} \rfloor)$。
- 剩下的数都将与$p^{k}$互质。我们考虑以$p^{k}$分块,我们可以证明每段$p^{k}$中所有不是$p$的倍数的数的乘积在模$p^{k}$意义下是相同的。具体原因在于$i + p^{k} \equiv i (mod \; p^{k})$。通过暴力计算,这部分的复杂度就是$O(p^{k})$的。
接下来就没有什么问题了,用扩展欧几里得求逆元,有关$p$的幂次在除法时指数相减就行了。
#include <cstdio> typedef long long LL; int P; int Pow(int x, LL b, int p) {
static int re;
for (re = ; b; b >>= , x = (LL) x * x % p)
if (b & ) re = (LL) re * x % p;
return re;
}
int Ex_gcd(int a, int b, int &x, int &y) {
if (b == ) return x = , y = , a;
int gcd = Ex_gcd(b, a % b, y, x);
y -= a / b * x;
return gcd;
}
int Inv(int a, int p) {
static int x, y;
int gcd = Ex_gcd(a, p, x, y);
if (gcd != ) throw;
return (x % p + p) % p;
} int Fac(LL n, int p, int pk) {
if (n == ) return ;
int re = ;
for (int i = ; i <= pk; ++i)
if (i % p != ) re = (LL) re * i % pk;
re = Pow(re, n / pk, pk);
for (int i = ; i <= n % pk; ++i)
if (i % p != ) re = (LL) re * i % pk;
return (LL) re * Fac(n / p, p, pk) % pk;
} int Crt(LL n, LL m, int p, int pk) {
int fn = Fac(n, p, pk), fm = Fac(m, p, pk), fnm = Fac(n - m, p, pk);
int cp = ;
for (LL i = n; i; i /= p) cp += i / p;
for (LL i = m; i; i /= p) cp -= i / p;
for (LL i = n - m; i; i /= p) cp -= i / p;
int a = (LL) fn * Inv(fm, pk) % pk * Inv(fnm, pk) % pk * Pow(p, cp, pk) % pk;
return (LL) a * (P / pk) % P * Inv(P / pk, pk) % P;
} int Lucas(LL n, LL m, int p) {
int re = , x = p;
for (int i = ; i <= p; ++i) {
if (x % i != ) continue;
int pk = ;
while (x % i == ) pk *= i, x /= i;
re = (re + Crt(n, m, i, pk)) % p;
}
return re;
} int main() {
LL n, m;
scanf("%lld%lld%d", &n, &m, &P);
printf("%d\n", Lucas(n, m, P)); return ;
}
【科技】扩展Lucas随想的更多相关文章
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
- 扩展CRT +扩展LUCAS
再次感谢zyf2000超强的讲解. 扩展CRT其实就是爆推式子,然后一路合并,只是最后一个式子上我有点小疑惑,但整体还算好理解. #include<iostream> #include&l ...
- BZOJ3129 SDOI2013方程(容斥原理+扩展lucas)
没有限制的话算一个组合数就好了.对于不小于某个数的限制可以直接减掉,而不大于某个数的限制很容易想到容斥,枚举哪些超过限制即可. 一般情况下n.m.p都是1e9级别的组合数没办法算.不过可以发现模数已经 ...
- Codeforces.100633J.Ceizenpok's formula(扩展Lucas)
题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...
- P2467 [SDOI2010]地精部落 (dp+组合数)【扩展Lucas好难不会】
题目链接:传送门 题目: 题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其 ...
- 【learning】 扩展lucas定理
首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\bi ...
- BZOJ4830 [Hnoi2017]抛硬币 【扩展Lucas】
题目链接 BZOJ4830 题解 当\(a = b\)时,我们把他们投掷硬币的结果表示成二进制,发现,当\(A\)输给\(B\)时,将二进制反转一下\(A\)就赢了\(B\) 还要除去平局的情况,最后 ...
随机推荐
- ThinkPHP3.2开发仿京东商城项目实战视频教程
ThinkPHP3.2仿京东商城视频教程实战课程,ThinkPHP3.2开发大型商城项目实战视频 第一天 1.项目说明 2.时间插件.XSS过滤.在线编辑器使用 3.商品的删除 4.商品的修改完成-一 ...
- MFC -- Excel操作简介(基于VS2010)
一.添加与 Excel 操作相关的头文件 项目 -> 类向导,在右上方有一个下拉栏,选择其中的 类型库中的MFC类(T),即可看到下图所示界面,选择“文件”选项,然后在下方的位置选项中添加本地文 ...
- PropertyGrid中的枚举显示为中文
参考http://www.cnblogs.com/yank/archive/2011/09/17/2179598.html 在上述文档的基础上做了改进.从EnumConverter类派生 显示效果: ...
- python如何与以太坊交互并将区块链信息写入SQLite
关于区块链介绍性的研讨会通常以易于理解的点对点网络和银行分类账这类故事开头,然后直接跳到编写智能合约,这显得非常突兀.因此,想象自己走进丛林,想象以太坊区块链是一个你即将研究的奇怪生物.今天我们将观察 ...
- 华策光通信: LED可见光通信室内定位项目获最具投资价值奖
3月21日上午,一场持续3个多小时的O2O领域的创业DemoShow在深圳科兴科学园会议中心激烈上演.来自华策光通信的基于LED可见光通信室内精准定位项目作为LED与室内定位领域的跨界融合项目经过精彩 ...
- /etc/profile不生效问题
http://blog.csdn.net/cuker919/article/details/54178611
- 敏捷开发与XP实践
北京电子科技学院(BESTI) 实 验 报 告 课程: Java 班级:1352 姓名:黄伟业 学号:20135215 成绩: ...
- Gradle入门(4):依赖管理
在现实生活中,要创造一个没有任何外部依赖的应用程序并非不可能,但也是极具挑战的.这也是为什么依赖管理对于每个软件项目都是至关重要的一部分. 这篇教程主要讲述如何使用Gradle管理我们项目的依赖,我们 ...
- grunt入门讲解2:如何使用 Gruntfile 配置任务
Grunt的task配置都是在 Gruntfile 中的grunt.initConfig方法中指定的.此配置主要包括以任务名称命名的属性,和其他任意数据.一旦这些代表任意数据的属性与任务所需要的属性相 ...
- 转载---Atom编辑器常用快捷键
常用快捷键–亲测及翻译 英文 中文 快捷键 功能 New Window 新建界面窗口 Ctrl + Shift + N 如中文意思 New File 新建文件 Ctrl + N 如中文意思 Open ...