题解原文地址:https://www.cnblogs.com/lujiaju6555/p/8468709.html

给数组a,有两种操作,1 l r查询[l,r]中每个数出现次数的mex,注意是出现次数,mex是最小未出现的自然数,2 x y将a[x]修改为y。

题解:带修改莫队可以解决此题。带修改莫队不会的同学可以先去做下BZOJ2120,然后mex+莫队可以参考BZOJ3585。带修改莫队就是加入了第三关键字time,然后按(左端点所在块,右端点所在块,时间)排序,其中时间指的是在第几次修改操作后。注意修改时要记下原来的数,以便还原回去。维护mex可以对权值分块,如果某块中数的个数==R-L+1,那么这块所有数都出现了,否则暴力扫,我有个同学直接暴力维护也过了。。。

#include <bits/stdc++.h>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int n, m, pos[maxn], s[maxn], c[maxn], all[maxn], t[maxn], cnt[maxn];
int qsz, csz;
struct node
{
int l, r, t, res, id;
}Node[maxn]; void add_n(int l, int r, int t, int id)
{
Node[id].l = l;
Node[id].r = r;
Node[id].t = t;
Node[id].id = id;
} struct change
{
int pos, New, Old;
}Cha[maxn]; void add_c(int pos, int New, int Old, int ans)
{
Cha[ans].pos = pos;
Cha[ans].New = New;
Cha[ans].Old = Old;
} bool cmp(node a, node b)
{
if(pos[a.l] == pos[b.l])
{
if(pos[a.r] == pos[b.r])
return a.t < b.t;
return pos[a.r] < pos[b.r];
}
return pos[a.l] < pos[b.l];
} bool cmp_id(node a, node b)
{
return a.id < b.id;
} int update(int val, int d)
{
if(s[val] > ) cnt[s[val]]--; //s是记录val 出现的次数 cnt标记这个次数是否出现 因为有多个数 可能有些数出现的次数相同 所有用++即可
s[val] += d; //因为当前数val的次数改变 所以 如果未改变时的val的次数 给cnt贡献了1个的话 要先减去 再更新s[val] 再更新cnt[s[val]]
if(s[val] > ) cnt[s[val]]++;
}
int L=, R=, T=;
int go(int idx, int val)
{
if(L <= idx && idx <= R) //如果 当前时间内 修改的位置在当前区间 则先删去上一次在这个位置更新的值 再加上本次在这个位置更新的值
{
update(c[idx], -);
update(val, );
}
c[idx] = val; //更新
} int main()
{
qsz = csz = ;
int tot = ;
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++)
{
scanf("%d",&c[i]);
t[i] = c[i];
all[++tot] = c[i];
}
int block=pow(n,2.0/);
for(int i=; i<=n; i++)
pos[i] = (i-)/block + ;
for(int i=; i<=m; i++)
{
int op, l, r;
scanf("%d%d%d", &op, &l, &r);
if(op == )
{
add_n(l, r, csz, ++qsz);
}
else
{
add_c(l, r, t[l], ++csz);
t[l] = r;
all[++tot] = r;
}
}
sort(all+, all+tot+);
tot = unique(all+, all+tot+) - (all + );
for(int i=; i<=n; i++)
c[i] = lower_bound(all+, all+tot+, c[i]) - all;
for(int i=; i<=csz; i++)
{
Cha[i].New = lower_bound(all+, all+tot+, Cha[i].New) - all;
Cha[i].Old = lower_bound(all+, all+tot+, Cha[i].Old) - all;
}
sort(Node+, Node+qsz+, cmp);
for(int i=; i<=qsz; i++)
{
// for(; T < Node[i].t; T++)
// go(Cha[T+1].pos, Cha[T+1].New);
// for(; T > Node[i].t; T--)
// go(Cha[T].pos, Cha[T].Old);
for(; R < Node[i].r; R++)
update(c[R+], );
for(; R > Node[i].r; R--)
update(c[R], -);
for(; L < Node[i].l; L++)
update(c[L], -);
for(; L > Node[i].l; L--)
update(c[L-], );
for(; T < Node[i].t; T++) //遍历在询问当前区间时 的 时间之前的修改
go(Cha[T+].pos, Cha[T+].New);
for(; T > Node[i].t; T--)
go(Cha[T].pos, Cha[T].Old); for(int j=; ; j++)
if(!cnt[j])
{
Node[i].res = j;
break;
}
// cout<< Node[i].res <<endl;
}
sort(Node+, Node+qsz+, cmp_id);
for(int i=; i<=qsz; i++)
cout<< Node[i].res <<endl; return ;
}

Machine Learning CodeForces - 940F(带修改的莫队)的更多相关文章

  1. Machine Learning CodeForces - 940F (带修改的莫队)

    You come home and fell some unpleasant smell. Where is it coming from? You are given an array a. You ...

  2. codeforces 940F 带修改的莫队

    F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  3. Machine Learning Codeforces - 940F(带修莫队) && 洛谷P4074 [WC2013]糖果公园

    以下内容未验证,有错请指正... 设块大小为T,则块数为$\frac{n}{T}$ 将询问分为$(\frac{n}{T})^2$块(按照左端点所在块和右端点所在块分块),同块内按时间从小到大依次处理 ...

  4. BZOJ 2120: 数颜色 带修改的莫队算法 树状数组套主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2120 标题里是两种不同的解法. 带修改的莫队和普通莫队比多了个修改操作,影响不大,但是注意一下细节 ...

  5. 【BZOJ】2120: 数颜色 带修改的莫队算法

    [题意]给定n个数字,m次操作,每次询问区间不同数字的个数,或修改某个位置的数字.n,m<=10^4,ai<=10^6. [算法]带修改的莫队算法 [题解]对于询问(x,y,t),其中t是 ...

  6. 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块

    题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...

  7. 【bzoj3052】[wc2013]糖果公园 带修改树上莫队

    题目描述 给出一棵n个点的树,每个点有一个点权,点权范围为1~m.支持两种操作:(1)修改一个点的点权 (2)对于一条路径,求$\sum\limits_{i=1}^m\sum\limits_{j=1} ...

  8. P1903 [国家集训队]数颜色 / 维护队列 带修改的莫队

    \(\color{#0066ff}{ 题目描述 }\) 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支 ...

  9. UOJ 58 (树上带修改的莫队)

    UOJ 58 糖果公园 Problem : 给一棵n个点的树,每个点上有一种颜色,对于一条路径上的点,若 i 颜色第 j 次出现对该路径权值的贡献为 w[i] * c[j], 每次询问一条路径的权值, ...

  10. UVA - 12345 带修改的莫队

    题意显然:给出初始序列,单点修改,区间查询元素的种类. 由于时限过宽,暴力可过. 比较优秀的解法应该是莫队. 带修改的莫队题解可以看https://www.luogu.org/blog/user126 ...

随机推荐

  1. mnist手写数字识别(SVM)

    import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.linear_model import ...

  2. 相机标定与矫正opencv+MATLAB

    博客转载自:http://blog.csdn.net/Loser__Wang/article/details/51811347 本文目的在于记录如何使用MATLAB做摄像机标定,并通过opencv进行 ...

  3. Shader Variants 打包遇到的问题

    1. 遇到的问题 最常见的是打包到手机后效果与PC上不一致,具体情况比如: 光照贴图失效 雾失效 透明或者cutoff失效 以上首先需要检查的地方是Shader变体的编译设置 2. 超级着色器编译成N ...

  4. 《杜增强讲Unity之Tanks坦克大战》3-添加坦克

    3 添加坦克 3.1 本节效果预览   3.2 另存新场景 首先打开上次的场景s1,另存为s2,放到同一个文件夹下面.   3.3 添加坦克模型 在Model文件夹下面找到Tank模型   将Tank ...

  5. 《Redis设计与实现》阅读笔记(二)--简单动态字符串

    简单动态字符串 Redis只在一些无需对字符串进行修改的地方使用C字符串,大部分时候使用简单动态字符串(simple dynamic string, SDS),字符串的抽象类型.二进制安全,可以存放任 ...

  6. Pod的创建过程

    Pod是kubernetes中最小的调度单位,里面包含多个容器,也是真正运行你服务的仓库,同一个pod中容器之间资源共享(IP .网络.cpu.mem.挂载目录等). 1.  准备一个yaml(RC/ ...

  7. vi/vim命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/mondol/p/vi-examples.html 进入vi vi filename # 打开或新建文件,并将光标置于第 ...

  8. cal命令详解

    基础命令学习目录首页 原文链接:https://www.yiibai.com/linux/cal.html cal命令可以用来显示公历(阳历)日历.公历是现在国际通用的历法,又称格列历,通称阳历.“阳 ...

  9. Ubuntu 1804 本地显示远程服务器文件

    本地是 Ubuntu 1804 最近想查看服务器上的图片,之前都是scp到本地,感觉太麻烦,于是查到有一种方法,ssh图形界面那种: 1.在File 界面下,左侧文件栏的最后一列有 “+ Other ...

  10. Beta发布—视频展示

    视频链接:http://v.youku.com/v_show/id_XMzE3ODQ0NjIzMg==.html视频简要内容介绍:1.一个小小的logo展示.2.在alpha的基础上,beta发布中增 ...