题解原文地址:https://www.cnblogs.com/lujiaju6555/p/8468709.html

给数组a,有两种操作,1 l r查询[l,r]中每个数出现次数的mex,注意是出现次数,mex是最小未出现的自然数,2 x y将a[x]修改为y。

题解:带修改莫队可以解决此题。带修改莫队不会的同学可以先去做下BZOJ2120,然后mex+莫队可以参考BZOJ3585。带修改莫队就是加入了第三关键字time,然后按(左端点所在块,右端点所在块,时间)排序,其中时间指的是在第几次修改操作后。注意修改时要记下原来的数,以便还原回去。维护mex可以对权值分块,如果某块中数的个数==R-L+1,那么这块所有数都出现了,否则暴力扫,我有个同学直接暴力维护也过了。。。

#include <bits/stdc++.h>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int n, m, pos[maxn], s[maxn], c[maxn], all[maxn], t[maxn], cnt[maxn];
int qsz, csz;
struct node
{
int l, r, t, res, id;
}Node[maxn]; void add_n(int l, int r, int t, int id)
{
Node[id].l = l;
Node[id].r = r;
Node[id].t = t;
Node[id].id = id;
} struct change
{
int pos, New, Old;
}Cha[maxn]; void add_c(int pos, int New, int Old, int ans)
{
Cha[ans].pos = pos;
Cha[ans].New = New;
Cha[ans].Old = Old;
} bool cmp(node a, node b)
{
if(pos[a.l] == pos[b.l])
{
if(pos[a.r] == pos[b.r])
return a.t < b.t;
return pos[a.r] < pos[b.r];
}
return pos[a.l] < pos[b.l];
} bool cmp_id(node a, node b)
{
return a.id < b.id;
} int update(int val, int d)
{
if(s[val] > ) cnt[s[val]]--; //s是记录val 出现的次数 cnt标记这个次数是否出现 因为有多个数 可能有些数出现的次数相同 所有用++即可
s[val] += d; //因为当前数val的次数改变 所以 如果未改变时的val的次数 给cnt贡献了1个的话 要先减去 再更新s[val] 再更新cnt[s[val]]
if(s[val] > ) cnt[s[val]]++;
}
int L=, R=, T=;
int go(int idx, int val)
{
if(L <= idx && idx <= R) //如果 当前时间内 修改的位置在当前区间 则先删去上一次在这个位置更新的值 再加上本次在这个位置更新的值
{
update(c[idx], -);
update(val, );
}
c[idx] = val; //更新
} int main()
{
qsz = csz = ;
int tot = ;
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++)
{
scanf("%d",&c[i]);
t[i] = c[i];
all[++tot] = c[i];
}
int block=pow(n,2.0/);
for(int i=; i<=n; i++)
pos[i] = (i-)/block + ;
for(int i=; i<=m; i++)
{
int op, l, r;
scanf("%d%d%d", &op, &l, &r);
if(op == )
{
add_n(l, r, csz, ++qsz);
}
else
{
add_c(l, r, t[l], ++csz);
t[l] = r;
all[++tot] = r;
}
}
sort(all+, all+tot+);
tot = unique(all+, all+tot+) - (all + );
for(int i=; i<=n; i++)
c[i] = lower_bound(all+, all+tot+, c[i]) - all;
for(int i=; i<=csz; i++)
{
Cha[i].New = lower_bound(all+, all+tot+, Cha[i].New) - all;
Cha[i].Old = lower_bound(all+, all+tot+, Cha[i].Old) - all;
}
sort(Node+, Node+qsz+, cmp);
for(int i=; i<=qsz; i++)
{
// for(; T < Node[i].t; T++)
// go(Cha[T+1].pos, Cha[T+1].New);
// for(; T > Node[i].t; T--)
// go(Cha[T].pos, Cha[T].Old);
for(; R < Node[i].r; R++)
update(c[R+], );
for(; R > Node[i].r; R--)
update(c[R], -);
for(; L < Node[i].l; L++)
update(c[L], -);
for(; L > Node[i].l; L--)
update(c[L-], );
for(; T < Node[i].t; T++) //遍历在询问当前区间时 的 时间之前的修改
go(Cha[T+].pos, Cha[T+].New);
for(; T > Node[i].t; T--)
go(Cha[T].pos, Cha[T].Old); for(int j=; ; j++)
if(!cnt[j])
{
Node[i].res = j;
break;
}
// cout<< Node[i].res <<endl;
}
sort(Node+, Node+qsz+, cmp_id);
for(int i=; i<=qsz; i++)
cout<< Node[i].res <<endl; return ;
}

Machine Learning CodeForces - 940F(带修改的莫队)的更多相关文章

  1. Machine Learning CodeForces - 940F (带修改的莫队)

    You come home and fell some unpleasant smell. Where is it coming from? You are given an array a. You ...

  2. codeforces 940F 带修改的莫队

    F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  3. Machine Learning Codeforces - 940F(带修莫队) && 洛谷P4074 [WC2013]糖果公园

    以下内容未验证,有错请指正... 设块大小为T,则块数为$\frac{n}{T}$ 将询问分为$(\frac{n}{T})^2$块(按照左端点所在块和右端点所在块分块),同块内按时间从小到大依次处理 ...

  4. BZOJ 2120: 数颜色 带修改的莫队算法 树状数组套主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2120 标题里是两种不同的解法. 带修改的莫队和普通莫队比多了个修改操作,影响不大,但是注意一下细节 ...

  5. 【BZOJ】2120: 数颜色 带修改的莫队算法

    [题意]给定n个数字,m次操作,每次询问区间不同数字的个数,或修改某个位置的数字.n,m<=10^4,ai<=10^6. [算法]带修改的莫队算法 [题解]对于询问(x,y,t),其中t是 ...

  6. 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块

    题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...

  7. 【bzoj3052】[wc2013]糖果公园 带修改树上莫队

    题目描述 给出一棵n个点的树,每个点有一个点权,点权范围为1~m.支持两种操作:(1)修改一个点的点权 (2)对于一条路径,求$\sum\limits_{i=1}^m\sum\limits_{j=1} ...

  8. P1903 [国家集训队]数颜色 / 维护队列 带修改的莫队

    \(\color{#0066ff}{ 题目描述 }\) 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支 ...

  9. UOJ 58 (树上带修改的莫队)

    UOJ 58 糖果公园 Problem : 给一棵n个点的树,每个点上有一种颜色,对于一条路径上的点,若 i 颜色第 j 次出现对该路径权值的贡献为 w[i] * c[j], 每次询问一条路径的权值, ...

  10. UVA - 12345 带修改的莫队

    题意显然:给出初始序列,单点修改,区间查询元素的种类. 由于时限过宽,暴力可过. 比较优秀的解法应该是莫队. 带修改的莫队题解可以看https://www.luogu.org/blog/user126 ...

随机推荐

  1. JUC——延迟队列

    所谓的延迟队列最大的特征是它可以自动通过队列进行脱离,例如:现在有一些对象被临时保存着,但是有可能该集合对象是一个公共对象,那么里面的某些数据如果不在使用的时候就希望其可以在指定的时间达到后自动的消失 ...

  2. 【Unity Shader】(六) ------ 复杂的光照(上)

    笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题.              [Unity Sha ...

  3. 使用CNN做数字识别和人脸识别

    上次写的一层神经网络也都贴这里了. 我有点困,我先睡觉,完了我再修改 这个代码写法不太符合工业代码的规范,仅仅是用来学习的的.还望各位见谅 import sys,ossys.path.append(o ...

  4. ats 转发代理

    ats是一个通用代理,可配置为反向和转发代理; 转发代理可以用作基础架构中的中央工具来访问web, 它可以与缓存结合使用以降低 总体带宽使用率.转发代理充当本地网络上的客户端浏览器与这些客户端访问的所 ...

  5. Ruby知识点三:运算符

    1.逻辑运算符 (1)条件1 || 条件2 条件1为假时,才需判断条件2 (2)条件1 && 条件2 条件1为真时,才需判断条件2 2.范围运算符 (1)x..y  从x到y,包括y ...

  6. tr命令详解

    基础命令学习目录 原文链接:https://www.cnblogs.com/ginvip/p/6354440.html 什么是tr命令?tr,translate的简写,translate的翻译: [t ...

  7. alias命令详情

    基础命令学习目录首页 原文链接:http://c.biancheng.net/view/938.html 给命令设置别名,你可以把它当作命令的"小名",但是这样做有什么意义呢? 比 ...

  8. 作业要求 20181127-5 Beta发布用户使用报告

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2450 一.用户反馈 反馈截图(部分) 三.用户反馈情况统计图

  9. Visual Studio AI配置环境

    参考链接:http://www.cnblogs.com/ms-uap/p/9123033.html 背景: 1.能联网的电脑:Win7 64 SP1 2.鼠标.键盘.显示器好使 3.已安装VS2010 ...

  10. 第十三次作业psp

    psp 进度条 代码累积折线图 博文累积折线图 psp饼状图