【bzoj3598】 Scoi2014—方伯伯的商场之旅
http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接)
题意
Solution
原来这就是极水的数位dp,呵呵= =,感觉白学了。http://www.cnblogs.com/Artanis/p/3751644.html
首先我们考虑集结点设置第一位(最低位)上,数位dp计算出此时的代价。
如果将集结点往高位移动一位,那么此时代价会怎么变化呢,位置比集结点高的数位上的数它们的距离全部-1,位置比集结点低的数位上的数它们的距离全部+1。所以我们再数位dp,计算出变化值,舍弃变化值<0的数,将答案更新。
细节
LL,枚举是1~K-1
代码
// bzoj3598
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL f[60][3000],l,r;
int K,n,t[60]; LL dfs(int pos,int s,int lim) {
if (pos==0) return s;
if (!lim && f[pos][s]!=-1) return f[pos][s];
int end=lim ? t[pos] : K-1;
LL res=0;
for (int i=0;i<=end;i++)
res+=dfs(pos-1,s+i*(pos-1),lim && i==end);
if (!lim) f[pos][s]=res;
return res;
}
LL dfs(int pos,int s,int m,int lim) {
if (s<0) return 0;
if (pos==0) return s;
if (!lim && f[pos][s]!=-1) return f[pos][s];
int end=lim ? t[pos] : K-1;
LL res=0;
for (int i=0;i<=end;i++) {
if (pos>=m) res+=dfs(pos-1,s+i,m,lim && i==end);
else res+=dfs(pos-1,s-i,m,lim && i==end);
}
if (!lim) f[pos][s]=res;
return res;
}
LL solve(LL x) {
for (n=0;x;x/=K) t[++n]=x%K;
memset(f,-1,sizeof(f));
LL res=dfs(n,0,1);
for (int i=2;i<=n;i++) {
memset(f,-1,sizeof(f));
res-=dfs(n,0,i,1);
}
return res;
}
int main() {
scanf("%lld%lld%d",&l,&r,&K);
printf("%lld\n",solve(r)-solve(l-1));
return 0;
}
【bzoj3598】 Scoi2014—方伯伯的商场之旅的更多相关文章
- [BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)
3598: [Scoi2014]方伯伯的商场之旅 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 449 Solved: 254[Submit][Sta ...
- BZOJ3598 SCOI2014方伯伯的商场之旅(数位dp)
看到数据范围就可以猜到数位dp了.显然对于一个数最后移到的位置应该是其中位数.于是考虑枚举移到的位置,那么设其左边和为l,左右边和为r,该位置数为p,则需要满足l+p>=r且r+p>=l. ...
- bzoj3598 [Scoi2014]方伯伯的商场之旅
数位dp,我们肯定枚举集合的位置,但是如果每次都重新dp的话会很麻烦,所以我们可以先钦定在最低位集合,dp出代价,然后再一步步找到正确的集合点,每次更改的代价也dp算就好了. #include < ...
- 2019.03.28 bzoj3598: [Scoi2014]方伯伯的商场之旅(带权中位数+数位dp)
传送门 题意咕咕咕自己读吧挺简单的 思路: 由带权中位数的性质可以得到对于每个数放在每个二进制位的代价一定是个单调或者单峰函数,因此我们先把所有的数都挪到第一个位置,然后依次向右枚举峰点(极值点)把能 ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- 【bzoj3598】: [Scoi2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- [SCOI2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- 【数位DP】SCOI2014 方伯伯的商场之旅
题目内容 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子. 说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 ...
- BZOJ.3598.[SCOI2014]方伯伯的商场之旅(贪心 数位DP)
题目链接 先考虑,对于确定的一个数,怎样移动代价最少(或者移到哪个位置最优)? 假设我们都移到下标\(1\)位置(设集合点为\(1\)),那么移动到下标\(2\)与\(1\)相比代价差为:\(下标&l ...
随机推荐
- Java生成唯一ID
这里我用的是Java提供的java.util.UUID类来产生随机字串,UUID码是什么我就不再赘述,能满足我们的需求就可以. 下面是java代码: import java.util.UUID; pu ...
- 一个可以自由存取的onedriver
https://cittedu-my.sharepoint.com/personal/jostin_5gd_me/Documents/jostin
- React Native移动开发实战-2-如何调试React Native项目
在实际开发中,还有一个影响开发效率的重要因素:调试. 在1.4.3节中已经介绍了Enable Live Debugger的使用.本节来介绍另一个非常重要的调试选项:Debug JSRemotely选项 ...
- Ruby知识点二:类
1.追查对象是否属于某个类时,使用is_a?方法 追查某个对象属于哪个类时,使用class方法 判断某个对象是否属于某个类时,使用instance_of?方法 判断类是否包含某个模块,使用inclu ...
- ffplay.exe操作方式
大牛博客: 博文名称:[总结]FFMPEG视音频编解码零基础学习方法 博文链接:http://blog.csdn.net/leixiaohua1020/article/details/15811977 ...
- Acer 4750G安装OS X 10.9 DP4(简版)
一.下载os x 10.9懒人版:http://bbs.pcbeta.com/viewthread-1384504-1-1.html 二.用系统自带的磁盘分区工具划分一个5G左右的临时安装盘(新建分区 ...
- [linux] ssh远程执行本地脚本
1.ssh密钥登录 略 2.免确认机器指纹,ssh -o StrictHostKeyChecking=no [root@XM-v125 ~]# ssh wykai@192.168.0.110 The ...
- GC知识随笔
1. http://blog.csdn.net/column/details/14851.html 地址记录 2.关于Minor GC,Major GC与Full GC 1) Minor GC ...
- Javascript开发者 常用知识
Javascript是一种日益增长的语言,特别是现在ECMAScript规范按照每年的发布时间表发布.伴随着这门语言的规模化和快速发展,掌握JS(不仅仅是jQuery)的重要性,变得更加重要. 这不是 ...
- TeamWork#3,Week5,Scrum Meeting 11.9
由于经验不足和储备知识不够,最近我们的项目遇到了一些技术问题,需要对项目进行重新计划.我们总结了经验教训,找出了问题所在,明确了要补充的知识,加紧学习,将会在一周之内解决相关问题. 成员 已完成 待完 ...