【刷题】BZOJ 3262 [HNOI2008]GT考试
Description
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0
Input
第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
4 3 100
111
Sample Output
81
Solution
这题还是很无奈的
按照数位dp的思想依次考虑每一位上的数字,考虑设计dp,\(f[i][j]\) 代表考虑完第 \(i\) 位之后,后 \(j\) 位与不吉利数字的前 \(j\) 位相同的方案数
那么最后答案为 \(ans=\sum_{i=0}^{m-1}f[n][i]\)
现在新加进来一个数,对之前的相同的 \(j\) 位造成的影响会有三种情况:
延长原有的 \(j\) 位,变成 \(j+1\) 位
直接把原有的 \(j\) 位打回0位
把原来的 \(j\) 位变短到一个位置,而这个位置,你会发现正好是KMP中求的fail/next数组
那么,\(f[i][j]=f[i-1][j-1]+\sum_{k=1}^mf[i-1][k]*[next[k]=j-1]\)
再进一步,\(f[i][j]=\sum_{k=0}^{m-1}f[i-1][k]*a[k][j]\),其中 \(a[k][j]\) 代表从匹配好 \(k\) 位变成匹配 \(j\) 位的方案数
对于 \(a\) 数组,先KMP求出fail/next数组,然后直接枚举每个位置上的每个数,相当于暴力求得
对于 \(f\) 数组,看上面的式子难道不眼熟吗,这东西显然可以矩阵快速幂优化
然后答案就出来了
注意一下每个人的KMP写法都不一样,求的fail/next数组也会有所不同,但只要能达到效果就可以了,不同的写法最后算 \(a\) 的时候,细节略有不同
#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXM=400+5;
int n,m,Mod,ans,nexts[MAXM];
char s[MAXM];
struct Matrix{
int a[MAXM][MAXM];
inline void init()
{
memset(a,0,sizeof(a));
}
inline Matrix operator * (const Matrix &A) const {
Matrix B;
for(register int i=0;i<m;++i)
for(register int j=0;j<m;++j)
{
B.a[i][j]=0;
for(register int k=0;k<m;++k)(B.a[i][j]+=(a[i][k]*A.a[k][j]))%=Mod;
}
return B;
};
};
Matrix A,B;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void KMP()
{
nexts[0]=-1;
for(register int i=1;i<m;++i)
{
int j=nexts[i-1];
while(s[i]!=s[j+1]&&j>=0)j=nexts[j];
if(s[i]==s[j+1])nexts[i]=j+1;
else nexts[i]=-1;
}
}
inline void init()
{
KMP();
for(register int i=0;i<m;++i)
for(register int j='0';j<='9';++j)
{
int k=i;
while(k&&s[k]!=j)k=nexts[k-1]+1;
if(s[k]==j)k++;
if(k!=m)B.a[i][k]++;
}
}
inline Matrix Fast_Matrix(int k)
{
Matrix res;
res.init();
res=B;
--k;
while(k)
{
if(k&1)res=res*B;
B=B*B;
k>>=1;
}
return res;
}
int main()
{
read(n);read(m);read(Mod);
A.init();B.init();
scanf("%s",s);
init();
A.a[0][0]=1;
B=Fast_Matrix(n);
A=A*B;
for(register int i=0;i<m;++i)(ans+=A.a[0][i])%=Mod;
write(ans,'\n');
return 0;
}
【刷题】BZOJ 3262 [HNOI2008]GT考试的更多相关文章
- BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4266 Solved: 2616[Submit][Statu ...
- bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...
- 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵
原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- BZOJ 1009: [HNOI2008]GT考试(kmp+dp+矩阵优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 思路:真的是好题啊! 对于这种题目,很有可能就是dp,$f[i][j]$表示分析到第 ...
- bzoj 1009:[HNOI2008]GT考试
这道题机房n多人好久之前就A了…… 我到现在才做出来…… 一看就是DP+矩阵乘法,但是一开始递推式推错了…… 正确的递推式应该是二维的…… f[i][j] 表示第准考证到第 i 位匹配了 j 位的方案 ...
- bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...
- BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法
标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...
随机推荐
- 火狐浏览器油猴子GreaseMonkey使用教程
火狐浏览器油猴子GreaseMonkey使用教程 首先下载火狐浏览器 安装成功后用火狐浏览器打开链接,界面如下 然后搜索GreaseMonkey. 搜索结果,图标是个小猴子,然后添加到火狐浏览器,成功 ...
- while循环计算规则:内循环—外循环!
num= 1 #值 =1while num <= 10 : # num(1)小于10 print(num) # 应该打印 这个1的值 num +=1 # num+=1等价于 num再加1 所以这 ...
- .Net MVC缓存
https://www.cnblogs.com/JoeSnail/p/7993903.html
- kubernetes集群部署mysql 8.0
参考:https://blog.csdn.net/sealir/article/details/81177747?utm_source=blogxgwz1 集群内安装mysql并添加相应存储(PVC) ...
- Redis勒索事件爆发,如何避免从删库到跑路?
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 9月10日下午,又一起规模化利用Redis未授权访问漏洞攻击数据库的事件发生,此次 ...
- 【一】,python简单爬虫实现
一: 1.获取当前页的课程名称,地址:https://www.ichunqiu.com/courses/webaq 2.选取其中一门课程名称查看源代码: 代码如下: <p class=" ...
- IE10不能显示JSON文件内容
IE7,8,9下Ajax返回后,再执行跳转,会弹出阻止提示框. 所以我采用WebForm 提交思想: //导出 jv.postOpen = jv.PostOpen = jv.Export = func ...
- 在ASP.NET里实现计算器代码的封装
一.具体代码 Default2.aspx.cs public partial class Chapter1_Default2 : System.Web.UI.Page { protected void ...
- Leetcode题库——6.Z字形变换
@author: ZZQ @software: PyCharm @file: convert.py @time: 2018/9/20 20:12 要求: Z字形变换 将字符串 "PAYPAL ...
- TCP 连接管理
实验代码和内容:https://github.com/ZCplayground/Understanding-Unix-Linux-Programming/tree/master/11.socket 明 ...