时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

万圣节的中午,小Hi和小Ho在吃过中饭之后,来到了一个新的鬼屋!

鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。

由于没有肚子的压迫,小Hi和小Ho决定好好的逛一逛这个鬼屋,逛着逛着,小Hi产生了这样的问题:鬼屋中任意两个地点之间的最短路径是多少呢?

提示:其实如果你开心的话,完全可以从每个节点开始使用Dijstra算法_(:з」∠)_。

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为2个整数N、M,分别表示鬼屋中地点的个数和道路的条数。

接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。

对于100%的数据,满足N<=10^2,M<=10^3, 1 <= length_i <= 10^3。

对于100%的数据,满足迷宫中任意两个地点都可以互相到达。

输出

对于每组测试数据,输出一个N*N的矩阵A,其中第i行第j列表示,从第i个地点到达第j个地点的最短路径的长度,当i=j时这个距离应当为0。

样例输入
5 12
1 2 967
2 3 900
3 4 771
4 5 196
2 4 788
3 1 637
1 4 883
2 4 82
5 2 647
1 4 198
2 4 181
5 2 665
样例输出
0 280 637 198 394
280 0 853 82 278
637 853 0 771 967
198 82 771 0 196
394 278 967 196 0
 #include <iostream>
#include <vector>
#include <climits>
#include <algorithm>
using namespace std; int N, M;
vector<vector<int>> graph; void solve() {
for (int k = ; k <= N; ++k) {
for (int i = ; i <= N; ++i) {
for (int j = ; j <= N; ++j) {
if (graph[i][k] < INT_MAX && graph[k][j] < INT_MAX) {
graph[i][j] = min(graph[i][j], graph[i][k] + graph[k][j]);
}
}
}
}
for (int i = ; i <= N; ++i) {
for (int j = ; j <= N; ++j) {
cout << graph[i][j] << " ";
}
cout << endl;
}
} int main() {
while (cin >> N >> M) {
graph.assign(N+, vector<int>(N+, INT_MAX));
for (int i = ; i <= N; ++i) {
graph[i][i] = ;
}
int u, v, len;
for (int i = ; i <= M; ++i) {
cin >> u >> v >> len;
graph[u][v] = graph[v][u] = min(graph[u][v], len);
}
solve();
}
return ;
}

[hihoCoder] #1089 : 最短路径·二:Floyd算法的更多相关文章

  1. 数据结构与算法--最短路径之Floyd算法

    数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算 ...

  2. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  3. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  4. 最短路径 - 弗洛伊德(Floyd)算法

    为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点 ...

  5. 最短路径问题-Floyd算法

    概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用 ...

  6. 图的最短路径---弗洛伊德(Floyd)算法浅析

    算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...

  7. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  8. 26最短路径之Floyd算法

    Floyd算法 思想:将n个顶点的图G“分成”很多子图 每对顶点vi和vj对应子图Gij(i=0,1,…,n-1和j=0,1,…,n-1) 每对顶点vi和vj都保留一条顶点限于子图Gij中的最短路径P ...

  9. 每一对顶点间最短路径的Floyd算法

    Floyd思想可用下式描述: A-1[i][j]=gm[i][j] A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]}    -1<=k<=n ...

随机推荐

  1. [Javascript] Closure Cove, Common mistake

    They’ve got a problem with their existing code, which tries to use a closure. Check it out: function ...

  2. 使用sed进行文字替换

    范式: sed -i "s/查找内容/替换后内容/g" `grep 查找内容 -rl 查找开始路径` 例子: #sed -i "s/abc/ABC/g" `gr ...

  3. (剑指Offer)面试题61:按之字形顺序打印二叉树

    题目: 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. 思路: 按照广度优先遍历来遍历二叉树,但是需要 ...

  4. [ kvm ] 四种简单的网络模型

    1. 隔离模式:虚拟机之间组建网络,该模式无法与宿主机通信,无法与其他网络通信,相当于虚拟机只是连接到一台交换机上.    2. 路由模式:相当于虚拟机连接到一台路由器上,由路由器(物理网卡),统一转 ...

  5. GET 和 POST的区别

    1.最普遍的答案 GET使用URL或Cookie传参.而POST将数据放在BODY中. GET的URL会有长度上的限制,则POST的数据则可以非常大. POST比GET安全,因为数据在地址栏上不可见. ...

  6. IDEA开发web程序配置Tomcat

    1.下载zip版的Tomcat 7,并解压2.在IDEA中配置Tomcat 7 在idea中的Settings(Ctrl+Alt+s)(或者点击图标 ) 弹出窗口左上过滤栏中输入“Applicatio ...

  7. std::move的实际工作过程

    std::move的定义如下: template <typename T> typename remove_reference<T>::type && move ...

  8. Lua 字符串库函数总结

    字符串库 注:字符串在Lua中是不可变的.不论什么的string操作都不会去改变原有的字符串.都是返回新的字符串 一.一般函数 1. 求长度 s = "Hello LUA "; p ...

  9. LR函数基础(二)

    (一)用到的函数: (1) web_set_option()   //重定向设置 (2)web_reg_save_param和custom_request都常于处理参数的动态生成. web_reg_s ...

  10. 每一个软件开发人员绝对必须掌握的关于 Unicode 和字符集的最基础的知识

    2013-02-05 14:18 48人阅读 评论(0) 收藏 举报 关键字:     Unicode, Character Set, 字符集, UTF-8, ANSI, ASCII, UTF-7   ...