时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

万圣节的中午,小Hi和小Ho在吃过中饭之后,来到了一个新的鬼屋!

鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。

由于没有肚子的压迫,小Hi和小Ho决定好好的逛一逛这个鬼屋,逛着逛着,小Hi产生了这样的问题:鬼屋中任意两个地点之间的最短路径是多少呢?

提示:其实如果你开心的话,完全可以从每个节点开始使用Dijstra算法_(:з」∠)_。

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为2个整数N、M,分别表示鬼屋中地点的个数和道路的条数。

接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。

对于100%的数据,满足N<=10^2,M<=10^3, 1 <= length_i <= 10^3。

对于100%的数据,满足迷宫中任意两个地点都可以互相到达。

输出

对于每组测试数据,输出一个N*N的矩阵A,其中第i行第j列表示,从第i个地点到达第j个地点的最短路径的长度,当i=j时这个距离应当为0。

样例输入
5 12
1 2 967
2 3 900
3 4 771
4 5 196
2 4 788
3 1 637
1 4 883
2 4 82
5 2 647
1 4 198
2 4 181
5 2 665
样例输出
0 280 637 198 394
280 0 853 82 278
637 853 0 771 967
198 82 771 0 196
394 278 967 196 0
 #include <iostream>
#include <vector>
#include <climits>
#include <algorithm>
using namespace std; int N, M;
vector<vector<int>> graph; void solve() {
for (int k = ; k <= N; ++k) {
for (int i = ; i <= N; ++i) {
for (int j = ; j <= N; ++j) {
if (graph[i][k] < INT_MAX && graph[k][j] < INT_MAX) {
graph[i][j] = min(graph[i][j], graph[i][k] + graph[k][j]);
}
}
}
}
for (int i = ; i <= N; ++i) {
for (int j = ; j <= N; ++j) {
cout << graph[i][j] << " ";
}
cout << endl;
}
} int main() {
while (cin >> N >> M) {
graph.assign(N+, vector<int>(N+, INT_MAX));
for (int i = ; i <= N; ++i) {
graph[i][i] = ;
}
int u, v, len;
for (int i = ; i <= M; ++i) {
cin >> u >> v >> len;
graph[u][v] = graph[v][u] = min(graph[u][v], len);
}
solve();
}
return ;
}

[hihoCoder] #1089 : 最短路径·二:Floyd算法的更多相关文章

  1. 数据结构与算法--最短路径之Floyd算法

    数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算 ...

  2. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  3. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  4. 最短路径 - 弗洛伊德(Floyd)算法

    为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点 ...

  5. 最短路径问题-Floyd算法

    概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用 ...

  6. 图的最短路径---弗洛伊德(Floyd)算法浅析

    算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...

  7. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  8. 26最短路径之Floyd算法

    Floyd算法 思想:将n个顶点的图G“分成”很多子图 每对顶点vi和vj对应子图Gij(i=0,1,…,n-1和j=0,1,…,n-1) 每对顶点vi和vj都保留一条顶点限于子图Gij中的最短路径P ...

  9. 每一对顶点间最短路径的Floyd算法

    Floyd思想可用下式描述: A-1[i][j]=gm[i][j] A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]}    -1<=k<=n ...

随机推荐

  1. Excel中R1C1引用样式

    在Excel处理中,经常需要修改某行某列的值.默认情况下Excel中的列号是字母,每次都要去数,因为对字母的位置不熟悉,特别是又有合并单元格的时候,很容易数错.能不能把列也显示成数字,我坚信Offic ...

  2. C++生成十字绣图案(二) 面向对象

    基本的十字绣线性生成中提供了判断下一步可以画的位置并且逐步生成的函数.以这些基本函数为基础,可以进行更多变化的图案设计. 为了方便的扩展,可以把线性生成写成一个类,以后的修改继承这个类. 头文件Bas ...

  3. java thread dump日志分析

    jstack Dump 日志文件中的线程状态 dump 文件里,值得关注的线程状态有: 死锁,Deadlock(重点关注)  执行中,Runnable 等待资源,Waiting on conditio ...

  4. eclipse/STS 切换目录视图

  5. hadoop的namenode无法启动的解决的方法

    安装hadoop集群时,启动集群,发现master节点的namenode没有启动成功.这一般都是没有格式格式化namenode的缘故.格式化一下就可以,格式化namenode的命令:在hadoop安装 ...

  6. MySQL Event计划任务刷慢日志

    前言 最近在尝试一个日志系统graylog来收集mysql的慢查询日志提,供后续的分析.监控和报警等.测试步骤已经到日志已成功收集到graylog,测试时需要刷一些慢查询日志出来.为了刷比较多的日志和 ...

  7. Timus 1149. Sinus Dances 打印复杂公式

    就是打印以下这两个复杂的式子: Let An = sin(1–sin(2+sin(3–sin(4+-sin(n))-) Let Sn = (-(A1+n)A2+n–1)A3+-+2)An+1 For ...

  8. HTML+CSS浏览器兼容性问题

    浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同 问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大. 碰到频率:100% 解决方案:CSS里    ...

  9. VMware Player 12.5.0 中文免费版

    VMWare Player优点:– 免费的 VMWare Player 体积仅90多MB,相比7百多MB且还要付费的 VMware Workstation 无疑更适合个人用户使用– 主界面清爽简洁,几 ...

  10. poj 1156 Palindrome

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 51631   Accepted: 17768 Desc ...