#\(\mathcal{\color{red}{Description}}\)

\(Link\)

有一个图,求其在\(1-N\)的最短路小于一个给定值下,点权最大值的最小值。

#\(\mathcal{\color{red}{Solution}}\)

\(emmm\)这个题也是几天前做的……正在填坑\(qwq\)。

这道题虽然在\(Luogu\)上显示是和\(\color{cyan}{A\ \ Link}\)一个难度的,但是要明显简单很多好不好……

正解的话,很显然要二分一个血量…… 因为二分(答案)是有套路的:

1、求最……的……(一般不可以静态求)

2、求什么就二分什么

3、 一般是反着推,就是用二分出的结果去推条件是否满足,或者状态是否合法

于是,二分交费,然后在\(check\)的时候,由于二分的是最大值,所以比二分的\(x\)大的就不走,小的可以走,以此为限制条件\(SPFA\),观察跑出来的最短路是否大于拥有的血量,大的话自然就不合法,小的话自然合法。然后就做完了\(qwq\)

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define ll long long
#define to(k) e[k].to using namespace std ;
const int MAXN = 62050 ;
struct edge{
ll to, next, v ;
}e[MAXN << 1] ;
queue<ll> q ;
ll head[MAXN << 1], cnt, dist[MAXN], i, k, ct ;
ll base[MAXN], l, r, mid, a, b, c, N, M, K, vis[MAXN], now ; inline void init(){
memset(dist, 0x3f, sizeof(dist)), memset(vis, 0, sizeof(vis)) ;
queue<ll> emt ; swap(q, emt), q.push(1), vis[1] = 1, dist[1] = 0 ;
}
inline bool check(ll x){
init() ;
while(!q.empty()){
now = q.front(), q.pop(), vis[now] = 0 ;
for(k = head[now]; k ; k = e[k].next){
if(base[to(k)] > x) continue ;
if(dist[to(k)] > dist[now] + e[k].v){
dist[to(k)] = dist[now] + e[k].v ;
if(!vis[to(k)]){
vis[to(k)] = 1 ;
q.push(to(k)) ;
}
}
}
}
if(dist[N] > K) return 0 ; return 1 ;
}
inline void add(int u, int v, int w){
e[++cnt].to = v, e[cnt].v = w ;
e[cnt].next = head[u], head[u] = cnt ;
}
int main(){
cin >> N >> M >> K ;
for(i = 1; i <= N; i ++) cin >> base[i] ;
for(i = 1; i <= M; i ++){
cin >> a >> b >> c ;
add(a, b, c), add(b, a, c) ;
}l = 0, r = 1000000000 ;
while(l < r){
mid = (l + r) >> 1 ;
if(check(mid)) r = mid ;
else l = mid + 1 ;
}
if(l == 1000000000) cout << "AFK" ;
else cout << l ;
}

幕后花絮:这个题我特别细心地判了\(-1\),结果让输出\(AFK\)……好吧人生就是这样的跌宕起伏\(ORZ\)……然后现在的我看二分答案就像我当年的我看快速幂一样,绝对不是不会,可以充分体现出我的“OI”思维没有多高……因为常人自然难以理解,\(Coder\)素质越高,理解起来越简单……现在的状态嘛…大概写出一份二分答案来问题不是很大,但是要做到稔熟于心,也还需要一段路要走啊\(qwq\)。

[LuoguP1462]通往奥格瑞玛的道路($SPFA+$二分)的更多相关文章

  1. luoguP1462通往奥格瑞玛的道路(二分答案+spfa)

    题意 给出n个点m条边的无向图. 每条边有两个权值a,b; 问在保证从1到n的路径a权值和小于x时,路径上b权值最大值最小为多少. (n≤10000,m≤50000,x≤1000000000) 题解 ...

  2. [LuoguP1462]通往奥格瑞玛的道路

    题目链接 题意简述:现在有一个图,每经过一个点就会交钱,走一条路就会扣血.在血量>0的前提下,要从1走到n点,并且要求路径上交钱的最大值最小. 解题思路:首先最大值最小,我们选择二分.目前有两个 ...

  3. 【洛谷】【二分答案+最短路】P1462 通往奥格瑞玛的道路

    在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛 题目背景 [题目描述:] 在艾泽 ...

  4. P1462 通往奥格瑞玛的道路

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  5. 最短路【洛谷P1462】 通往奥格瑞玛的道路

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  6. 洛谷——P1462 通往奥格瑞玛的道路

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  7. luogu P1462 通往奥格瑞玛的道路--spfa+二分答案

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  8. P1462 通往奥格瑞玛的道路(二分答案+最短路)

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  9. 洛谷P1462 通往奥格瑞玛的道路(二分+spfa,二分+Dijkstra)

    洛谷P1462 通往奥格瑞玛的道路 二分费用. 用血量花费建图,用单源最短路判断 \(1\) 到 \(n\) 的最短路花费是否小于 \(b\) .二分时需要不断记录合法的 \(mid\) 值. 这里建 ...

  10. P1462 通往奥格瑞玛的道路【二分+Dij】

    P1462 通往奥格瑞玛的道路 提交 29.89k 通过 6.88k 时间限制 1.00s 内存限制 125.00MB 题目提供者gconeice 难度提高+/省选- 历史分数100 提交记录 查看题 ...

随机推荐

  1. scss-函数

    在scss中除了可以定义变量,具有@extend和@mixins等特性之外,还自备了一系列的函数功能. scss本身带有大量的内置函数,具体可以参阅官网函数模块. 一.字符串函数 unquote($s ...

  2. JavaScript停止冒泡例子

    <!DOCTYPE html><html><head><meta charset="utf-8"><title>qypt ...

  3. CSS之换行

    在项目中,常常遇到一些问题,可以通过CSS来快速解决,比如受到布局影响会导致内容溢出,这个时候就可以使用CSS换行解决 自动换行: { word-wrap:break-word; } 强制不换行: { ...

  4. Spring Boot—15SpringJPA

    pom.xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  5. 网络基础 Windows下安装和配置net-snmp 代理

    Windows 下安装和配置net-snmp 代理[摘录] by:授客 QQ:1033553122   A.   安装  1.   安装前准备 ActivePerl-5.10.0.1004-MSWin ...

  6. 前端 css+js实现返回顶部功能

    描述: 本文主要是讲,通过css+js实现网页中的[返回顶部]功能. 实现代码: HTML: <div> <button onclick="returnTop()" ...

  7. 修改spfile位置

    虽然很多地方不建议这么做,可是有HA.oracle软件建在本地盘的情况下,如果spfile放在dbs下,会导致每次修改spfile都要去手动copy到备机上,这是很麻烦的一件事情,所以我把spflie ...

  8. 对JDBC的轻量级封装,Hibernate框架

    IDEA是真的好用... 用脑子下jar包..http://mvnrepository.com/

  9. Entity Framework之DB First方式

    EF(Entity Framework的简称,下同)有三种方式,分别是:DataBase First. Model First和Code First. 下面是Db First的方式: 1. 数据库库中 ...

  10. Django的model中创建表

    类中的class Meta字段的作用: 第一个作用可以给这个类起名字 在后台的admin中显示这个类名字 class CourseCategory(models.Model): "" ...