#\(\mathcal{\color{red}{Description}}\)

\(Link\)

有一个图,求其在\(1-N\)的最短路小于一个给定值下,点权最大值的最小值。

#\(\mathcal{\color{red}{Solution}}\)

\(emmm\)这个题也是几天前做的……正在填坑\(qwq\)。

这道题虽然在\(Luogu\)上显示是和\(\color{cyan}{A\ \ Link}\)一个难度的,但是要明显简单很多好不好……

正解的话,很显然要二分一个血量…… 因为二分(答案)是有套路的:

1、求最……的……(一般不可以静态求)

2、求什么就二分什么

3、 一般是反着推,就是用二分出的结果去推条件是否满足,或者状态是否合法

于是,二分交费,然后在\(check\)的时候,由于二分的是最大值,所以比二分的\(x\)大的就不走,小的可以走,以此为限制条件\(SPFA\),观察跑出来的最短路是否大于拥有的血量,大的话自然就不合法,小的话自然合法。然后就做完了\(qwq\)

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define ll long long
#define to(k) e[k].to using namespace std ;
const int MAXN = 62050 ;
struct edge{
ll to, next, v ;
}e[MAXN << 1] ;
queue<ll> q ;
ll head[MAXN << 1], cnt, dist[MAXN], i, k, ct ;
ll base[MAXN], l, r, mid, a, b, c, N, M, K, vis[MAXN], now ; inline void init(){
memset(dist, 0x3f, sizeof(dist)), memset(vis, 0, sizeof(vis)) ;
queue<ll> emt ; swap(q, emt), q.push(1), vis[1] = 1, dist[1] = 0 ;
}
inline bool check(ll x){
init() ;
while(!q.empty()){
now = q.front(), q.pop(), vis[now] = 0 ;
for(k = head[now]; k ; k = e[k].next){
if(base[to(k)] > x) continue ;
if(dist[to(k)] > dist[now] + e[k].v){
dist[to(k)] = dist[now] + e[k].v ;
if(!vis[to(k)]){
vis[to(k)] = 1 ;
q.push(to(k)) ;
}
}
}
}
if(dist[N] > K) return 0 ; return 1 ;
}
inline void add(int u, int v, int w){
e[++cnt].to = v, e[cnt].v = w ;
e[cnt].next = head[u], head[u] = cnt ;
}
int main(){
cin >> N >> M >> K ;
for(i = 1; i <= N; i ++) cin >> base[i] ;
for(i = 1; i <= M; i ++){
cin >> a >> b >> c ;
add(a, b, c), add(b, a, c) ;
}l = 0, r = 1000000000 ;
while(l < r){
mid = (l + r) >> 1 ;
if(check(mid)) r = mid ;
else l = mid + 1 ;
}
if(l == 1000000000) cout << "AFK" ;
else cout << l ;
}

幕后花絮:这个题我特别细心地判了\(-1\),结果让输出\(AFK\)……好吧人生就是这样的跌宕起伏\(ORZ\)……然后现在的我看二分答案就像我当年的我看快速幂一样,绝对不是不会,可以充分体现出我的“OI”思维没有多高……因为常人自然难以理解,\(Coder\)素质越高,理解起来越简单……现在的状态嘛…大概写出一份二分答案来问题不是很大,但是要做到稔熟于心,也还需要一段路要走啊\(qwq\)。

[LuoguP1462]通往奥格瑞玛的道路($SPFA+$二分)的更多相关文章

  1. luoguP1462通往奥格瑞玛的道路(二分答案+spfa)

    题意 给出n个点m条边的无向图. 每条边有两个权值a,b; 问在保证从1到n的路径a权值和小于x时,路径上b权值最大值最小为多少. (n≤10000,m≤50000,x≤1000000000) 题解 ...

  2. [LuoguP1462]通往奥格瑞玛的道路

    题目链接 题意简述:现在有一个图,每经过一个点就会交钱,走一条路就会扣血.在血量>0的前提下,要从1走到n点,并且要求路径上交钱的最大值最小. 解题思路:首先最大值最小,我们选择二分.目前有两个 ...

  3. 【洛谷】【二分答案+最短路】P1462 通往奥格瑞玛的道路

    在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛 题目背景 [题目描述:] 在艾泽 ...

  4. P1462 通往奥格瑞玛的道路

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  5. 最短路【洛谷P1462】 通往奥格瑞玛的道路

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  6. 洛谷——P1462 通往奥格瑞玛的道路

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  7. luogu P1462 通往奥格瑞玛的道路--spfa+二分答案

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  8. P1462 通往奥格瑞玛的道路(二分答案+最短路)

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  9. 洛谷P1462 通往奥格瑞玛的道路(二分+spfa,二分+Dijkstra)

    洛谷P1462 通往奥格瑞玛的道路 二分费用. 用血量花费建图,用单源最短路判断 \(1\) 到 \(n\) 的最短路花费是否小于 \(b\) .二分时需要不断记录合法的 \(mid\) 值. 这里建 ...

  10. P1462 通往奥格瑞玛的道路【二分+Dij】

    P1462 通往奥格瑞玛的道路 提交 29.89k 通过 6.88k 时间限制 1.00s 内存限制 125.00MB 题目提供者gconeice 难度提高+/省选- 历史分数100 提交记录 查看题 ...

随机推荐

  1. JS中Date.parse()和Date.UTC()返回值不一致

    Date.parse() 方法解析一个表示某个日期的字符串,并返回从1970-1-1 00:00:00 UTC 到该日期对象(该日期对象的UTC时间)的毫秒数,如果该字符串无法识别,或者一些情况下,包 ...

  2. CentOS7.4 + Ambari 2.6.1.5 + HDP 2.6.4.0 安装部署

    1. 参考说明 参考文档: https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.1.5/bk_ambari-installation/conten ...

  3. Eclipse 配置 maven 的两个 settings 文件

    eclipse配置的settings文件名完全可以自定义,而本机maven只认识settings.xml文件. eclipse里配置maven有一个叫全局的,有一个叫用户的.这两个文件可以和本机mav ...

  4. Eclipse创建第一个Servlet(Dynamic Web Project方式)、第一个Web Fragment Project(web容器向jar中寻找class文件)

    创建第一个Servlet(Dynamic Web Project方式) 注意:无论是以注解的方式还是xml的方式配置一个servlet,servlet的url-pattern一定要以一个"/ ...

  5. 带你从零学ReactNative开发跨平台App开发(六)

    ReactNative跨平台开发系列教程: 带你从零学ReactNative开发跨平台App开发(一) 带你从零学ReactNative开发跨平台App开发(二) 带你从零学ReactNative开发 ...

  6. 几个很好用SQL语法(SqlServer)

    1,MERGE INTO 语句: 这个语法仅需要一次全表扫描就完成了全部工作,执行效率要高于INSERT+UPDATE,作用还是很强大的(简单的说就是它可以批量更新和插入处理一个数据集,如果存在就更新 ...

  7. 要提高SQL查询效率where语句条件的先后次序应如何写

    我们要做到不但会写SQL,还要做到写出性能优良的SQL语句. (1)选择最有效率的表名顺序(只在基于规则的优化器中有效): Oracle的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句 ...

  8. Script:when transaction will finish rollback

    ------------------------------------------------------------------------------- -- -- Script: rollin ...

  9. iOS8中的定位服务

    iOS8中的定位服务 My app that worked fine in iOS 7 doesn't work with the iOS 8 SDK. CLLocationManager doesn ...

  10. 申请Let’s Encrypt永久免费SSL证书过程教程及常见问题

    配置证书https://easy.zhetao.com/   虽然目前Let’s Encrypt免费SSL证书默认是90天有效期,但是我们也可以到期自动续约,不影响我们的尝试和使用,为了考虑到文章的真 ...